-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
334 lines (272 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import os, sys
import torch
import random
import logging
import numpy as np
from glob import glob
import torchvision.transforms as T
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
from collections import defaultdict
from tqdm import tqdm
from datasets.train_datasets import *
from datasets.data_utils import get_sets_dict
from models.model_factory import model_factory
from models.MinkLoc3dv2.mink_params import make_sparse_tensor, make_sparse_tensor_rgb,CartesianQuantizer, PolarQuantizer
from util import util
from loss import cosface_loss
from util import parser
from datetime import datetime
import time
from tensorboardX import SummaryWriter
#####Args
args = parser.parse_arguments()
start_time = datetime.now()
ALL_DATASETS = [TrainDataset, TrainDatasetv2, TrainDatasetv0, ScannetPRDataset, ScannetPRDatasetv2, ScannetPRDatasetv3]
dataset_str_mapping = {d.__name__: d for d in ALL_DATASETS}
class BasicTrainer(object):
def __init__(self, args):
self.args = args
self.T = 2
self.comp_iter = 0
self.curr_iter = 0
self.lamda = 100
self.get_quantizer(args)
#### Loss
self.criterion = torch.nn.CrossEntropyLoss()
self.init_lr = args.lr
#### Input
if args.dataset in ['ScannetPRDataset', 'ScannetPRDatasetv2']:
self.make_tensor = make_sparse_tensor_rgb
else:
self.make_tensor = make_sparse_tensor
######TensorBoardX
logdir = f"logs/{args.save_dir}"
os.makedirs(logdir, exist_ok=True)
self.writer = SummaryWriter(logdir)
output_folder = f"logs/{args.save_dir}/{start_time.strftime('%Y-%m-%d_%H-%M-%S')}"
util.make_deterministic(args.seed)
util.setup_logging(output_folder, console="debug")
logging.info(f"The outputs are being saved in {output_folder}")
# save args parameters
argsDict = args.__dict__
with open(os.path.join("logs/", args.save_dir, 'setting.txt'), 'w') as f:
f.writelines('------------------ start ------------------' + '\n')
for eachArg, value in argsDict.items():
f.writelines(eachArg + ' : ' + str(value) + '\n')
f.writelines('------------------- end -------------------')
def train(self):
self.train_from_initial()
def train_from_initial(self):
#### Model
self.net = model_factory(args)
start_epoch_num = 0
#### Datasets
Dataset = dataset_str_mapping[args.dataset]
groups = [Dataset(args,
args.train_set_folder,
M=args.M,
N=args.N,
current_group=n,
min_pointclouds_per_class=args.min_images_per_class) for n in range(args.groups_num)]
# Each group has its own classifier, which depends on the number of classes in the group
# LMCL
self.classifiers = [cosface_loss.MarginCosineProduct(args.fc_output_dim, len(group)) for group in groups]
self.classifiers_optimizers = [torch.optim.Adam(classifier.parameters(), lr=args.classifiers_lr) for classifier in self.classifiers]
model_optimizer = torch.optim.Adam(self.net.parameters(), lr=args.lr)
logging.info(f"Using {len(groups)} groups")
logging.info(f"The {len(groups)} groups have respectively the following number of classes {[len(g) for g in groups]}")
logging.info(f"The {len(groups)} groups have respectively the following number of images {[g.get_images_num() for g in groups]}")
#### Train / evaluation loop
logging.info("Start training ...")
logging.info(f"There are {len(groups[0])} classes for the first group, " +
f"each epoch has {args.iterations_per_epoch} iterations " +
f"with batch_size {args.batch_size}, therefore the model sees each class (on average) " +
f"{args.iterations_per_epoch * args.batch_size / len(groups[0]):.1f} times per epoch")
for epoch_num in range(start_epoch_num, args.epochs_num):
# Select classifier and dataloader according to epoch
current_group_num = epoch_num % args.groups_num
self.cur_task = epoch_num
self.net.to(args.device)
self.net.train()
self.classifiers[current_group_num].to(args.device)
util.move_to_device(self.classifiers_optimizers[current_group_num], args.device)
dataloader = util.InfiniteDataLoader(groups[current_group_num],
num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=True,
pin_memory=(args.device=="cuda"), drop_last=True)
dataloader_iterator = iter(dataloader)
torch.backends.cudnn.enabled = False
if 'mink' in args.backbone:
self.get_quantizer(args)
self.train_one_epoch_sparse_tensor(current_group_num, dataloader_iterator, model_optimizer)
else:
self.train_one_epoch(current_group_num, dataloader_iterator, model_optimizer)
self.classifiers[current_group_num].cpu()
util.move_to_device(self.classifiers_optimizers[current_group_num], "cpu")
if (epoch_num+1)%4 == 0:
self.save_ckpt(epoch_num)
# scheduler.step()
print('---------------',model_optimizer.param_groups[0]['lr'])
logging.info(f"Trained for {epoch_num+1:02d} epochs, in total in {str(datetime.now() - start_time)[:-7]}")
def train_one_epoch(self,current_group_num, dataloader_iterator, model_optimizer):
total_loss = util.AverageMeter()
for iteration in tqdm(range(args.iterations_per_epoch), ncols=50):
pointclouds, targets, _ = next(dataloader_iterator)
pointclouds = pointclouds.squeeze(1).type(torch.FloatTensor) # (batch, 3, npoint)
pointclouds, targets = pointclouds.to(args.device), targets.to(args.device)
model_optimizer.zero_grad()
self.classifiers_optimizers[current_group_num].zero_grad()
descriptors = self.net(pointclouds, True)
output = self.classifiers[current_group_num](descriptors, targets)
loss = self.criterion(output, targets) # LCML
loss.backward()
model_optimizer.step()
self.classifiers_optimizers[current_group_num].step()
total_loss.update(loss.item(), 1)
if self.curr_iter % args.log_freq == 0 or self.curr_iter == 0:
self.writer.add_scalar('training/initial_loss', total_loss.avg, self.curr_iter)
self.writer.add_scalar('training/learning_rate', model_optimizer.param_groups[0]['lr'], self.curr_iter)
total_loss.reset()
torch.cuda.empty_cache()
self.curr_iter += 1
del loss,output, pointclouds
def train_one_epoch_sparse_tensor(self,current_group_num, dataloader_iterator, model_optimizer):
total_loss = util.AverageMeter()
for iteration in tqdm(range(args.iterations_per_epoch), ncols=50):
model_optimizer.zero_grad()
self.classifiers_optimizers[current_group_num].zero_grad()
pointclouds, targets, _ = next(dataloader_iterator)
targets = targets.to('cuda')
batch = self.make_tensor(pointclouds, self.quantizer, self.quantization_step)
batch = {e: batch[e].to('cuda') for e in batch}
descriptors = self.net(batch)
output = self.classifiers[current_group_num](descriptors, targets) # LMCL
loss = self.criterion(output, targets) # LCML
loss.backward()
model_optimizer.step()
self.classifiers_optimizers[current_group_num].step()
total_loss.update(loss.item(), 1)
if self.curr_iter % args.log_freq == 0 or self.curr_iter == 0:
self.writer.add_scalar('training/initial_loss', total_loss.avg, self.curr_iter)
self.writer.add_scalar('training/learning_rate', model_optimizer.param_groups[0]['lr'], self.curr_iter)
total_loss.reset()
torch.cuda.empty_cache()
self.curr_iter += 1
del loss,output, pointclouds
def get_quantizer(self, args):
if 'polar' in args.coordinates:
# 3 quantization steps for polar coordinates: for sectors (in degrees), rings (in meters) and z coordinate (in meters)
self.quantization_step = tuple([float(e) for e in args.quantization_step.split(',')])
assert len(self.quantization_step) == 3, f'Expected 3 quantization steps: for sectors (degrees), rings (meters) and z coordinate (meters)'
self.quantizer = PolarQuantizer(quant_step=self.quantization_step)
elif 'cartesian' in args.coordinates:
# Single quantization step for cartesian coordinates
self.quantization_step = args.quantization_step
self.quantizer = CartesianQuantizer(quant_step=self.quantization_step)
def save_ckpt(self, epoch_num):
#### save every epoch
filename = f"checkpoint_epoch_{epoch_num}.pth"
checkpoint_file = 'logs/'+ args.save_dir + filename
state = {
'epoch': epoch_num,
"model_state_dict": self.net.state_dict(),
"classifiers_state_dict": [c.state_dict() for c in self.classifiers]}
torch.save(state, checkpoint_file)
print(f"Checkpoint saved to {checkpoint_file}")
class BackboneExpansion(BasicTrainer):
def __init__(self, args):
BasicTrainer.__init__(self,args)
def train(self):
#### Model
if args.resume_model:
logging.info('Training from saved weights')
start_epoch_num = self.loading_weights(args)
else:
logging.info('Training from scratch')
self.net = model_factory(args)
start_epoch_num = 0
#### Datasets
assert args.M == 20
assert args.groups_num == 8
Dataset = dataset_str_mapping[args.dataset]
groups = [Dataset(args,
args.train_set_folder,
M=args.M,
N=args.N,
current_group=n,
min_pointclouds_per_class=args.min_images_per_class) for n in range(args.groups_num)]
# Each group has its own classifier, which depends on the number of classes in the group
# LMCL
self.classifiers = [cosface_loss.MarginCosineProduct(args.fc_output_dim, len(group)) for group in groups]
self.classifiers_optimizers = [torch.optim.Adam(classifier.parameters(), lr=args.classifiers_lr) for classifier in self.classifiers]
logging.info(f"Using {len(groups)} groups")
logging.info(f"The {len(groups)} groups have respectively the following number of classes {[len(g) for g in groups]}")
logging.info(f"The {len(groups)} groups have respectively the following number of images {[g.get_images_num() for g in groups]}")
#### Train / evaluation loop
logging.info("Start training ...")
logging.info(f"There are {len(groups[0])} classes for the first group, " +
f"each epoch has {args.iterations_per_epoch} iterations " +
f"with batch_size {args.batch_size}, therefore the model sees each class (on average) " +
f"{args.iterations_per_epoch * args.batch_size / len(groups[0]):.1f} times per epoch")
for epoch_num in range(start_epoch_num, args.epochs_num):
# Select classifier and dataloader according to epoch
current_group_num = epoch_num % args.groups_num
self.cur_task = epoch_num
if self.cur_task < args.groups_num:
self.net.update_aggregators()
# if epoch_num < 16:
# lr = self.init_lr
# model_optimizer = torch.optim.Adam(self.net.parameters(), lr=lr)
# elif epoch_num < 24 & epoch_num >= 16:
# print('Use SGD optimizer')
# lr = self.init_lr *0.5
# model_optimizer = torch.optim.Adam(self.net.parameters(), lr=lr)
# else:
# lr = self.init_lr *0.1
# model_optimizer = torch.optim.Adam(self.net.parameters(), lr=lr)
model_optimizer = torch.optim.Adam(self.net.parameters(), lr=args.lr)
logging.info(f"On epoch {epoch_num} Group_{current_group_num} is under training with aggragator_{len(self.net.aggregators)}")
self.net.curr_group = current_group_num
self.net.to(args.device)
self.net.train()
self.classifiers[current_group_num].to(args.device)
util.move_to_device(self.classifiers_optimizers[current_group_num], args.device)
dataloader = util.InfiniteDataLoader(groups[current_group_num],
num_workers=args.num_workers,
batch_size=args.batch_size,
shuffle=True,
pin_memory=(args.device=="cuda"),
drop_last=True)
dataloader_iterator = iter(dataloader)
torch.backends.cudnn.enabled = False
if 'mink' in args.backbone:
self.train_one_epoch_sparse_tensor(current_group_num, dataloader_iterator, model_optimizer)
else:
self.train_one_epoch(current_group_num, dataloader_iterator, model_optimizer)
self.classifiers[current_group_num].cpu()
util.move_to_device(self.classifiers_optimizers[current_group_num], "cpu")
if (epoch_num+1)%4 == 0:
self.save_ckpt(epoch_num)
logging.info(f"Trained for {epoch_num+1:02d} epochs, in total in {str(datetime.now() - start_time)[:-7]}")
def loading_weights(self, args):
# try:
self.net = model_factory(args)
save_path = os.path.join('logs', args.save_dir, args.resume_model)
print('Use pretrain model')
state = torch.load(save_path) # ,map_location='cuda:0')
epoch = state['epoch'] + 1
#### Updating
for i in range(epoch):
if i < args.groups_num:
self.net.update_aggregators()
print(self.net)
#### Loading
self.net.load_state_dict(state['model_state_dict'])
return epoch
def main():
ALL_TRAINERS = [BackboneExpansion, BasicTrainer]
trainer_str_mapping = {d.__name__: d for d in ALL_TRAINERS}
trainer = trainer_str_mapping[args.trainer](args)
trainer.train()
if __name__ == "__main__":
main()