-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
executable file
·175 lines (135 loc) · 6.12 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
from pathlib import Path
import numpy as np
from PIL import Image
import torch
from torch.utils.data import Dataset as BaseDataset
from tqdm import tqdm as tqdm
import cv2
import albumentations as albu
from albumentations.pytorch.transforms import ToTensorV2
import utils
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from skimage import morphology
def create_data(train_data):
print(train_data)
tumor_set, stroma_set, normal_set = set(), set(), set()
for path in Path(train_data).glob('*.png'):
if utils.is_tumor(path): tumor_set.add(str(path))
if utils.is_stroma(path): stroma_set.add(str(path))
if utils.is_normal(path): normal_set.add(str(path))
tumor_images = list(tumor_set - stroma_set - normal_set)
stroma_images = list(stroma_set - tumor_set - normal_set)
normal_images = list(normal_set - tumor_set - stroma_set)
return tumor_images, stroma_images, normal_images
class LabeledDataset(BaseDataset):
def __init__(self, image_dir, mask_dir, transforms=None, num_classes=3):
self.image_dir = image_dir
self.mask_dir = mask_dir
self.name_list = sorted([i for i in os.listdir(self.image_dir) if i.endswith('.png')])
if transforms is None:
self.transforms = albu.Compose([
albu.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
ToTensorV2(transpose_mask=True),
])
else:
self.transforms = transforms
self.num_classes = num_classes
def __getitem__(self, i):
name = self.name_list[i]
# print(name, i)
image = np.array(Image.open(os.path.join(self.image_dir, name)))
mask = np.array(Image.open(os.path.join(self.mask_dir, name)), dtype=np.uint8)
sample = self.transforms(image=image, mask=mask)
label = [0] * self.num_classes
category = np.unique(mask)
for i in range(self.num_classes):
if i in category:
label[i] = 1
# print(name, sample['image'].shape)
return {'image': sample['image'], 'mask': sample['mask'], 'label': torch.Tensor(label), 'name': name, 'h': image.shape[0], 'w': image.shape[1]}
def __len__(self):
return len(self.name_list)
class UnlabeledDataset(BaseDataset):
def __init__(self, image_dir, transforms=None, num_classes=3):
self.image_dir = image_dir
self.name_list = sorted([i for i in os.listdir(self.image_dir) if i.endswith('.png')])
if transforms is None:
self.transforms = transforms.Compose([
transforms.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
transforms.ToTensor(),
])
else:
self.transforms = transforms
self.num_classes = num_classes
def __getitem__(self, i):
name = self.name_list[i]
label = self.get_label(name)
image = np.array(Image.open(os.path.join(self.image_dir, name)))
image = self.transforms(image=image)['image']
return {'image': image, 'label': torch.Tensor(label), 'name': name, 'h': image.shape[0], 'w': image.shape[1]}
def get_label(self, name):
label_str = '[' + name.split('[')[-1].split(']')[0] + ']'
if ' ' not in label_str:
label_str = '[' + ' '.join([i for i in label_str[1:-1]]) + ']'
if ',' not in label_str:
label_str = label_str.replace(' ', ',')
label = eval(label_str)
return label
def __len__(self):
return len(self.name_list)
class TestDataset(BaseDataset):
def __init__(self, args):
self.args = args
self.test_data = Path(args.test_data)
self.test_image = sorted(list((self.test_data / 'img').glob('*.png')))
self.transforms = albu.Compose([
albu.PadIfNeeded(self.args.patch_size, self.args.patch_size, border_mode=2, position=albu.PadIfNeeded.PositionType.TOP_LEFT),
albu.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
ToTensorV2(transpose_mask=True),
])
def __getitem__(self, i):
name = self.test_image[i].name
image = self.test_image[i]
image = np.array(Image.open(image))
mask = np.array(Image.open(self.test_data / 'mask' / name))
original_h, original_w = image.shape[:2]
sample = self.transforms(image=image, mask=mask)
image, mask = sample['image'], sample['mask'].long()
return image, mask, name, original_h, original_w
def __len__(self):
return len(self.test_image)
class TrainDataset(BaseDataset):
def __init__(self, args):
self.args = args
train_data = Path(args.train_data)
self.train_image = sorted(list(train_data.glob('*.png')))
self.transforms = albu.Compose([
albu.Resize(args.patch_size, args.patch_size),
albu.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
ToTensorV2(transpose_mask=True),
])
def __getitem__(self, i):
name = self.train_image[i].name
image = np.array(Image.open(self.train_image[i]))
if self.args.dataset == 'wsss4luad':
background = self.__class__._get_background(image)
tissue = np.zeros((image.shape[0], image.shape[1]))
tissue[background == 255] = 0
tissue[background == 0] = 127
else:
tissue = np.ones((image.shape[0], image.shape[1])) * 127
sample = self.transforms(image=image, mask=tissue)
image, tissue = sample['image'], sample['mask']
return {'image': image, 'tissue': tissue, 'name': str(name)}
def __len__(self):
return len(self.train_image)
@staticmethod
def _get_background(region):
gray = cv2.cvtColor(region, cv2.COLOR_RGB2GRAY)
ret, binary = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
binary = np.uint8(binary)
dst = morphology.remove_small_objects(binary==255,min_size=50,connectivity=1)
mask = np.array(dst, dtype=np.uint8)
mask = mask * 255
return mask