-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathldm_prune.py
137 lines (117 loc) · 5.38 KB
/
ldm_prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from diffusers import LDMPipeline, DDPMPipeline, DDIMPipeline, DDIMScheduler, DDPMScheduler, VQModel
from diffusers.models import UNet2DModel
import torch_pruning as tp
import torch
import torchvision
from torchvision import transforms
import torchvision
from tqdm import tqdm
import os
from glob import glob
from PIL import Image
import accelerate
import utils
import argparse
parser = argparse.ArgumentParser()
#parser.add_argument("--dataset", type=str, required=True)
parser.add_argument("--model_path", type=str, required=True)
parser.add_argument("--save_path", type=str, required=True)
parser.add_argument("--pruning_ratio", type=float, default=0.3)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--device", type=str, default='cpu')
#parser.add_argument("--pruner", type=str, default='taylor', choices=['taylor', 'random', 'magnitude', 'reinit', 'diff-pruning'])
parser.add_argument("--pruner", type=str, default='random', choices=['random', 'magnitude', 'reinit'])
#parser.add_argument("--thr", type=float, default=0.05, help="threshold for diff-pruning")
args = parser.parse_args()
batch_size = args.batch_size
if __name__=='__main__':
#dataset = utils.get_dataset(args.dataset)
#print(f"Dataset size: {len(dataset)}")
#train_dataloader = torch.utils.data.DataLoader(
# dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True
#)
#import torch_pruning as tp
# loading images for gradient-based pruning
#clean_images = iter(train_dataloader).next()
#if isinstance(clean_images, (list, tuple)):
# clean_images = clean_images[0]
#clean_images = clean_images.to(args.device)
#noise = torch.randn(clean_images.shape).to(clean_images.device)
# Loading pretrained model
print("Loading pretrained model from {}".format(args.model_path))
# load all models
unet = UNet2DModel.from_pretrained("CompVis/ldm-celebahq-256", subfolder="unet")
vqvae = VQModel.from_pretrained("CompVis/ldm-celebahq-256", subfolder="vqvae")
scheduler = DDIMScheduler.from_config("CompVis/ldm-celebahq-256", subfolder="scheduler")
# set to cuda
torch_device = torch.device(args.device) if torch.cuda.is_available() else "cpu"
unet.to(torch_device)
vqvae.to(torch_device)
example_inputs = {'sample': torch.randn(1, unet.in_channels, unet.sample_size, unet.sample_size).to(args.device), 'timestep': torch.ones((1,)).long().to(args.device)}
if args.pruning_ratio>0:
if args.pruner == 'taylor':
imp = tp.importance.TaylorImportance()
elif args.pruner == 'random' or args.pruner=='reinit':
imp = tp.importance.RandomImportance()
elif args.pruner == 'magnitude':
imp = tp.importance.MagnitudeImportance()
elif args.pruner == 'diff-pruning':
imp = tp.importance.TaylorImportance(multivariable=False)
else:
raise NotImplementedError
ignored_layers = [unet.conv_out]
ignored_layers = [unet.conv_out]
from diffusers.models.attention import Attention
channel_groups = {}
for m in unet.modules():
if isinstance(m, Attention):
channel_groups[m.to_q] = m.heads
channel_groups[m.to_k] = m.heads
channel_groups[m.to_v] = m.heads
pruner = tp.pruner.MagnitudePruner(
unet,
example_inputs,
importance=imp,
iterative_steps=1,
channel_groups=channel_groups,
ch_sparsity=args.pruning_ratio,
ignored_layers=ignored_layers,
)
base_macs, base_params = tp.utils.count_ops_and_params(unet, example_inputs)
unet.zero_grad()
unet.eval()
import random
for g in pruner.step(interactive=True):
g.prune()
# Update static attributes
from diffusers.models.resnet import Upsample2D, Downsample2D
for m in unet.modules():
if isinstance(m, (Upsample2D, Downsample2D)):
m.channels = m.conv.in_channels
m.out_channels == m.conv.out_channels
macs, params = tp.utils.count_ops_and_params(unet, example_inputs)
print(unet)
print("#Params: {:.4f} M => {:.4f} M".format(base_params/1e6, params/1e6))
print("#MACS: {:.4f} G => {:.4f} G".format(base_macs/1e9, macs/1e9))
unet.zero_grad()
del pruner
if args.pruner=='reinit':
def reset_parameters(model):
for m in model.modules():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
reset_parameters(unet)
pipeline = LDMPipeline(
unet=unet,
vqvae=vqvae,
scheduler=scheduler,
).to(torch_device)
pipeline.save_pretrained(args.save_path)
if args.pruning_ratio>0:
os.makedirs(os.path.join(args.save_path, "pruned"), exist_ok=True)
torch.save(unet, os.path.join(args.save_path, "pruned", "unet_pruned.pth"))
with torch.no_grad():
generator = torch.Generator(device=torch_device).manual_seed(0)
images = pipeline(num_inference_steps=100, batch_size=args.batch_size, output_type="numpy").images
os.makedirs(os.path.join(args.save_path, 'vis'), exist_ok=True)
torchvision.utils.save_image(torch.from_numpy(images).permute([0, 3, 1, 2]), "{}/vis/after_pruning.png".format(args.save_path))