-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_vit.py
301 lines (264 loc) · 11.4 KB
/
train_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#
# Authors: Simon Vandenhende
# Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
import argparse
import cv2
import os
import numpy as np
import sys
import torch
from torch.nn.parallel import DistributedDataParallel
from utils.config import create_config
from utils.common_config import get_train_dataset, get_transformations,\
get_val_dataset, get_train_dataloader, get_val_dataloader,\
get_optimizer, get_model, adjust_learning_rate,\
get_criterion
from utils.logger import Logger
from train.train_utils import train_vanilla,train_vanilla_distributed
from evaluation.evaluate_utils import eval_model, validate_results, save_model_predictions,\
eval_all_results,validate_results_v2
from termcolor import colored
import torch.distributed as dist
import subprocess
import random
from utils.custom_collate import collate_mil
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from utils.common_config import build_train_dataloader,build_val_dataloader
def str2bool(v):
"""
Input:
v - string
output:
True/False
"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def set_random_seed(seed, deterministic=False):
"""Set random seed.
Args:
seed (int): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Parser
parser = argparse.ArgumentParser(description='Vanilla Training')
parser.add_argument('--trBatch', default=None, type=int, help='moe experts number')
parser.add_argument('--valBatch', default=None, type=int, help='moe experts number')
parser.add_argument('--config_env',
help='Config file for the environment')
parser.add_argument('--config_exp',
help='Config file for the experiment')
parser.add_argument("--gpus",
type=int,
default=1,
help="number of gpus to use " "(only applicable to non-distributed training)",
)
parser.add_argument("--launcher",
choices=["pytorch", "slurm"],
default="pytorch",
help="job launcher",
)
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument('--one_by_one',default=False, type=str2bool, help='path to moe pretrained checkpoint')
parser.add_argument('--regu_experts_fromtask',default=False, type=str2bool, help='path to moe pretrained checkpoint')
args = parser.parse_args()
print('os.environ["LOCAL_RANK"]',os.environ["LOCAL_RANK"],args.local_rank)
if "LOCAL_RANK" not in os.environ:
os.environ["LOCAL_RANK"] = str(args.local_rank)
# print(os.environ["LOCAL_RANK"])
def main():
cv2.setNumThreads(0)
p = create_config(args.config_env, args.config_exp, local_rank=args.local_rank)
# print(os.environ["WORLD_SIZE"])
if args.trBatch is not None:
p['trBatch'] = args.trBatch
if args.valBatch is not None:
p['valBatch'] = args.valBatch
distributed = False
if args.local_rank >=0:
distributed = True
print(os.environ["WORLD_SIZE"])
print('args.local_rank',args.local_rank)
args.world_size = int(os.environ["WORLD_SIZE"])
# if "WORLD_SIZE" in os.environ:
# distributed = int(os.environ["WORLD_SIZE"]) > 1
if distributed:
if args.launcher == "pytorch":
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend="nccl", init_method="env://")
p['local_rank'] = args.local_rank
elif args.launcher == "slurm":
proc_id = int(os.environ["SLURM_PROCID"])
ntasks = int(os.environ["SLURM_NTASKS"])
node_list = os.environ["SLURM_NODELIST"]
num_gpus = torch.cuda.device_count()
p['gpus'] = num_gpus
torch.cuda.set_device(proc_id % num_gpus)
addr = subprocess.getoutput(
f"scontrol show hostname {node_list} | head -n1")
# specify master port
port = None
if port is not None:
os.environ["MASTER_PORT"] = str(port)
elif "MASTER_PORT" in os.environ:
pass # use MASTER_PORT in the environment variable
else:
# 29500 is torch.distributed default port
os.environ["MASTER_PORT"] = "29501"
# use MASTER_ADDR in the environment variable if it already exists
if "MASTER_ADDR" not in os.environ:
os.environ["MASTER_ADDR"] = addr
os.environ["WORLD_SIZE"] = str(ntasks)
os.environ["LOCAL_RANK"] = str(proc_id % num_gpus)
os.environ["RANK"] = str(proc_id)
dist.init_process_group(backend="nccl")
p['local_rank'] = int(os.environ["LOCAL_RANK"])
p['gpus'] = dist.get_world_size()
else:
p['local_rank'] = args.local_rank
# CUDNN
print(colored('Set CuDNN benchmark', 'blue'))
torch.backends.cudnn.benchmark = True
sys.stdout = Logger(os.path.join(p['output_dir'], 'log_file.txt'),local_rank=args.local_rank)
print(colored(p, 'red'))
print("Distributed training: {}".format(distributed))
print(f"torch.backends.cudnn.benchmark: {torch.backends.cudnn.benchmark}")
if args.seed is not None:
print(f'Set random seed to {args.seed}, deterministic: '
f'{args.deterministic}')
set_random_seed(args.seed, deterministic=args.deterministic)
print(colored('Retrieve model', 'blue'))
model = get_model(p)
# print('model',model)
if distributed:
model = DistributedDataParallel(
model.cuda(args.local_rank),
device_ids=[args.local_rank],
# output_device=args.local_rank,
# # broadcast_buffers=False,
find_unused_parameters=True,
)
else:
model = model.cuda()
# Get criterion
print(colored('Get loss', 'blue'))
criterion = get_criterion(p)
criterion.cuda()
print(criterion)
# Optimizer
print(colored('Retrieve optimizer', 'blue'))
optimizer = get_optimizer(p, model)
print(optimizer)
# Dataset
print(colored('Retrieve dataset', 'blue'))
# Transforms
train_transforms, val_transforms = get_transformations(p)
train_dataset = get_train_dataset(p, train_transforms)
val_dataset = get_val_dataset(p, val_transforms)
true_val_dataset = get_val_dataset(p, None) # True validation dataset without reshape
#### old version
# train_dataloader = get_train_dataloader(p, train_dataset)
# val_dataloader = get_val_dataloader(p, val_dataset)
#### new version 1
# train_sample = DistributedSampler(train_dataset, shuffle=True)
# train_dataloader = DataLoader(train_dataset, batch_size=p['trBatch'], shuffle=(train_sample is None), \
# drop_last=True, num_workers=p['nworkers'], collate_fn=collate_mil)
# val_sample = DistributedSampler(val_dataset, shuffle=False)
# val_dataloader = DataLoader(val_dataset, batch_size=p['valBatch'], shuffle=(val_sample is None), \
# drop_last=True, num_workers=p['nworkers'])
#### new version 2
train_dataloader = build_train_dataloader(
train_dataset, p['trBatch'], p['nworkers'], dist=distributed, shuffle=True)
val_dataloader = build_val_dataloader(
val_dataset, p['valBatch'], p['nworkers'], dist=distributed)
print('Train samples %d - Val samples %d' %(len(train_dataset), len(val_dataset)))
print('Train transformations:')
print(train_transforms)
print('Val transformations:')
print(val_transforms)
# Resume from checkpoint
if os.path.exists(p['checkpoint']):
print(colored('Restart from checkpoint {}'.format(p['checkpoint']), 'blue'))
checkpoint = torch.load(p['checkpoint'], map_location='cpu')
optimizer.load_state_dict(checkpoint['optimizer'])
model.load_state_dict(checkpoint['model'])
start_epoch = checkpoint['epoch']
best_result = checkpoint['best_result']
else:
print(colored('No checkpoint file at {}'.format(p['checkpoint']), 'blue'))
start_epoch = 0
#### don't do it during debug
save_model_predictions(p, val_dataloader, model)
if distributed:
torch.distributed.barrier()
best_result = eval_all_results(p)
# Main loop
print(colored('Starting main loop', 'blue'))
for epoch in range(start_epoch, p['epochs']):
print(colored('Epoch %d/%d' %(epoch+1, p['epochs']), 'yellow'))
print(colored('-'*10, 'yellow'))
# Adjust lr
lr = adjust_learning_rate(p, optimizer, epoch)
print('Adjusted learning rate to {:.5f}'.format(lr))
# Train
print('Train ...')
eval_train = train_vanilla_distributed(args, p, train_dataloader, model, criterion, optimizer, epoch)
# Evaluate
# Check if need to perform eval first
if 'eval_final_10_epochs_only' in p.keys() and p['eval_final_10_epochs_only']: # To speed up -> Avoid eval every epoch, and only test during final 10 epochs.
if epoch + 1 > p['epochs'] - 10:
eval_bool = True
else:
eval_bool = False
else:
eval_bool = True
# Perform evaluation
if eval_bool:
print('Evaluate ...')
save_model_predictions(p, val_dataloader, model)
if distributed:
torch.distributed.barrier()
curr_result = eval_all_results(p)
# improves, best_result = validate_results_v2(p, curr_result, best_result)
improves, best_result = validate_results(p, curr_result, best_result)
if improves:
if args.local_rank==0:
print('Save new best model')
# torch.save(model.state_dict(), p['best_model'])
torch.save({'model':model.state_dict()},p['best_model'])
# Checkpoint
print('Checkpoint ...')
if args.local_rank==0:
torch.save({'optimizer': optimizer.state_dict(), 'model': model.state_dict(),
'epoch': epoch + 1, 'best_result': best_result}, p['checkpoint'])
# Evaluate best model at the end
if args.local_rank==0:
print(colored('Evaluating best model at the end', 'blue'))
model.load_state_dict(torch.load(p['best_model'])['model'])
save_model_predictions(p, val_dataloader, model)
# if distributed:
# torch.distributed.barrier()
eval_stats = eval_all_results(p)
if __name__ == "__main__":
main()