-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_fastmoe.py
498 lines (442 loc) · 22.4 KB
/
train_fastmoe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#
# Authors: Simon Vandenhende
# Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
import argparse
import cv2
import os
import numpy as np
import sys
import torch
from torch.nn.parallel import DistributedDataParallel
from utils.config import create_config
from utils.common_config import get_train_dataset, get_transformations,\
get_val_dataset, get_train_dataloader, get_val_dataloader,\
get_optimizer, get_model, adjust_learning_rate,\
get_criterion
from utils.logger import Logger
from train.train_utils import train_vanilla,train_vanilla_distributed
from evaluation.evaluate_utils import eval_model, validate_results, save_model_predictions,\
eval_all_results,validate_results_v2
from termcolor import colored
import torch.distributed as dist
import subprocess
import random
from utils.custom_collate import collate_mil
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from utils.common_config import build_train_dataloader,build_val_dataloader
from utils.moe_utils import sync_weights,save_checkpoint
import time
import fmoe
from thop import clever_format
from thop import profile
def set_random_seed(seed, deterministic=False):
"""Set random seed.
Args:
seed (int): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def str2bool(v):
"""
Input:
v - string
output:
True/False
"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
# Parser
parser = argparse.ArgumentParser(description='Vanilla Training')
parser.add_argument('--config_env',
help='Config file for the environment')
parser.add_argument('--config_exp',
help='Config file for the experiment')
parser.add_argument("--gpus",
type=int,
default=1,
help="number of gpus to use " "(only applicable to non-distributed training)",
)
parser.add_argument("--launcher",
choices=["pytorch", "slurm"],
default="pytorch",
help="job launcher",
)
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument('--moe_data_distributed', action='store_true', help='if employ moe data distributed')
parser.add_argument('--moe_experts', default=16, type=int, help='moe experts number')
parser.add_argument('--moe_mlp_ratio', default=None, type=int, help='moe experts mlp ratio')
parser.add_argument('--moe_top_k', default=None, type=int, help='top k expert number')
parser.add_argument('--trBatch', default=None, type=int, help='train batch size')
parser.add_argument('--valBatch', default=None, type=int, help='validation batch size')
parser.add_argument('--moe_gate_arch', default="", type=str)
parser.add_argument('--moe_gate_type', default="noisy", type=str)
parser.add_argument('--vmoe_noisy_std', default=1, type=float)
parser.add_argument('--backbone_random_init',default=False, type=str2bool, help='whether randomly initialize backbone')
parser.add_argument('--pretrained', default='', type=str, help='path to moe pretrained checkpoint')
parser.add_argument('--moe_noisy_gate_loss_weight', default=0.01, type=float)
parser.add_argument('--pos_emb_from_pretrained', default=False, type=str, help='pos embedding load from pretrain weights')
parser.add_argument('--lr', default=None, type=float)
# parser.add_argument('--weight_decay', default=None, type=float)
parser.add_argument('--one_by_one',default=False, type=str2bool, help='whether train task one after another')
parser.add_argument('--task_one_hot',default=False, type=str2bool, help='whether use Task-conditioned MoE')
parser.add_argument('--multi_gate',default=False, type=str2bool, help='whether use Multi gate MoE')
parser.add_argument('--eval', action='store_true',help='if only do evaluation')
parser.add_argument('--flops', action='store_true',
help='flops calculation')
parser.add_argument('--ckp',type=str,default=None,help='checkpoint path during evaluation')
parser.add_argument('--save_dir', type=str, default=None)
parser.add_argument('--gate_task_specific_dim', default=-1, type=int, help='gate task specific dims')
parser.add_argument('--regu_experts_fromtask',default=False, type=str2bool, help='whether use task id to guide expert selection')
parser.add_argument('--num_experts_pertask',default=-1, type=int)
parser.add_argument('--gate_input_ahead',default=False, type=str2bool, help='whether make gate input different from token')
parser.add_argument('--regu_sem',default=False, type=str2bool, help='whether use segmentation map to guide expert selection')
parser.add_argument('--semregu_loss_weight', default=0.01, type=float)
parser.add_argument('--sem_force',default=False, type=str2bool, help='whether use segmentation map to guide expert selection')
parser.add_argument('--warmup_epochs',default=5, type=int, help='whether need warmup train expert')
parser.add_argument('--epochs',default=None, type=int, help='number of train epochs')
parser.add_argument('--regu_subimage',default=False, type=str2bool, help='whether use subimage regulation for expert selection')
parser.add_argument('--subimageregu_weight', default=0.01, type=float)
parser.add_argument('--multi_level',default=None, type=str2bool, help='whether use multi level loss')
parser.add_argument('--opt', default=None, type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"')
parser.add_argument('--weight_decay', type=float, default=0.0001,help='weight decay (default: 0.05)')
parser.add_argument('--expert_prune',default=False, type=str2bool, help='whether use expert pruning')
parser.add_argument('--tam_level0',default=None, type=str2bool, help='use tamlevel0 to boost training')
parser.add_argument('--tam_level1',default=None, type=str2bool, help='use tamlevel1 to boost training')
parser.add_argument('--tam_level2',default=None, type=str2bool, help='use tamlevel2 to boost training')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--time', action='store_true', help='if wanna get inference time')
args = parser.parse_args()
if args.task_one_hot:
args.one_by_one = True
# print('os.environ["LOCAL_RANK"]',os.environ["LOCAL_RANK"],args.local_rank)
if "LOCAL_RANK" not in os.environ:
os.environ["LOCAL_RANK"] = str(args.local_rank)
# print(os.environ["LOCAL_RANK"])
def main():
cv2.setNumThreads(0)
p = create_config(args.config_env, args.config_exp, local_rank=args.local_rank, args=args)
args.num_tasks = len(p.TASKS.NAMES)
p['multi_gate'] = args.multi_gate
if args.tam_level0 is not None:
p['model_kwargs']['tam_level0']=args.tam_level0
if args.tam_level1 is not None:
p['model_kwargs']['tam_level1']=args.tam_level1
if args.tam_level2 is not None:
p['model_kwargs']['tam_level2']=args.tam_level2
if args.lr is not None:
p['optimizer_kwargs']['lr'] = args.lr
if args.opt is not None:
p['optimizer'] == args.opt
if args.weight_decay is not None:
p['optimizer_kwargs']['weight_decay'] = args.weight_decay
if args.epochs is not None:
p['epochs'] = args.epochs
if args.backbone_random_init is not None:
p['backbone_kwargs']['random_init']=args.backbone_random_init
if args.moe_mlp_ratio is not None:
p['backbone_kwargs']['moe_mlp_ratio']=args.moe_mlp_ratio
if args.moe_top_k is not None:
p['backbone_kwargs']['moe_top_k']=args.moe_top_k
if args.trBatch is not None:
p['trBatch'] = args.trBatch
if args.valBatch is not None:
p['valBatch'] = args.valBatch
if args.multi_level is not None:
p['multi_level'] = args.multi_level
args.distributed = False
if args.local_rank >=0:
args.distributed = True
print(os.environ["WORLD_SIZE"])
print('args.local_rank',args.local_rank)
args.world_size = int(os.environ["WORLD_SIZE"])
if args.local_rank >=0:
sys.stdout = Logger(os.path.join(p['output_dir'], 'log_file.txt'),local_rank=args.local_rank)
if args.distributed:
if args.launcher == "pytorch":
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend="nccl", init_method="env://")
torch.distributed.barrier()
p['local_rank'] = args.local_rank
elif args.launcher == "slurm":
proc_id = int(os.environ["SLURM_PROCID"])
ntasks = int(os.environ["SLURM_NTASKS"])
node_list = os.environ["SLURM_NODELIST"]
num_gpus = torch.cuda.device_count()
p['gpus'] = num_gpus
torch.cuda.set_device(proc_id % num_gpus)
addr = subprocess.getoutput(
f"scontrol show hostname {node_list} | head -n1")
# specify master port
port = None
if port is not None:
os.environ["MASTER_PORT"] = str(port)
elif "MASTER_PORT" in os.environ:
pass # use MASTER_PORT in the environment variable
else:
# 29500 is torch.distributed default port
os.environ["MASTER_PORT"] = "29501"
# use MASTER_ADDR in the environment variable if it already exists
if "MASTER_ADDR" not in os.environ:
os.environ["MASTER_ADDR"] = addr
os.environ["WORLD_SIZE"] = str(ntasks)
os.environ["LOCAL_RANK"] = str(proc_id % num_gpus)
os.environ["RANK"] = str(proc_id)
dist.init_process_group(backend="nccl")
p['local_rank'] = int(os.environ["LOCAL_RANK"])
p['gpus'] = dist.get_world_size()
else:
p['local_rank'] = args.local_rank
# CUDNN
print(colored('Set CuDNN benchmark', 'blue'))
torch.backends.cudnn.benchmark = True
if args.seed is not None:
print(f'Set random seed to {args.seed}, deterministic: '
f'{args.deterministic}')
set_random_seed(args.seed, deterministic=args.deterministic)
print(colored(p, 'red'))
print("Distributed training: {}".format(args.distributed))
print(f"torch.backends.cudnn.benchmark: {torch.backends.cudnn.benchmark}")
print(str(args))
if args.distributed:
args.rank = torch.distributed.get_rank()
print(colored('Retrieve model', 'blue'))
args.moe_use_gate = (args.moe_gate_arch != "")
model = get_model(p,args)
if not torch.cuda.is_available():
raise NotImplementedError()
log.info('using CPU, this will be slow')
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.local_rank is not None:
torch.cuda.set_device(args.local_rank)
model.cuda(args.local_rank)
if p['backbone'] == 'VisionTransformer_moe' and (not args.moe_data_distributed):
print('Use fast moe distributed learning==================>>')
model = fmoe.DistributedGroupedDataParallel(model, device_ids=[args.local_rank],find_unused_parameters=True,)
sync_weights(model, except_key_words=["mlp.experts.h4toh", "mlp.experts.htoh4"])
else:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],find_unused_parameters=True)
else:
model.cuda()
if p['backbone'] == 'VisionTransformer_moe' and (not args.moe_data_distributed):
model = fmoe.DistributedGroupedDataParallel(model)
else:
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.local_rank is not None:
model.cuda()
else:
raise NotImplementedError()
# Get criterion
print(colored('Get loss', 'blue'))
criterion = get_criterion(p)
criterion.cuda(args.local_rank)
print(criterion)
# Optimizer
print(colored('Retrieve optimizer', 'blue'))
optimizer = get_optimizer(p, model, args)
print(optimizer)
# Dataset
print(colored('Retrieve dataset', 'blue'))
# Transforms
train_transforms, val_transforms = get_transformations(p)
train_dataset = get_train_dataset(p, train_transforms)
val_dataset = get_val_dataset(p, val_transforms)
true_val_dataset = get_val_dataset(p, None) # True validation dataset without reshape
train_dataloader = build_train_dataloader(
train_dataset, p['trBatch'], p['nworkers'], dist=args.distributed, shuffle=True)
val_dataloader = build_val_dataloader(
val_dataset, p['valBatch'], p['nworkers'], dist=args.distributed)
print('Train samples %d - Val samples %d' %(len(train_dataset), len(val_dataset)))
print('Train transformations:')
print(train_transforms)
print('Val transformations:')
print(val_transforms)
if args.flops:
for ii, sample in enumerate(val_dataloader):
inputs, meta = sample['image'].cuda(non_blocking=True), sample['meta']
assert inputs.size(0)==1
flops, params = profile(model, inputs=(inputs, ),)
flops, params = clever_format([flops, params], "%.3f")
print(flops,params)
exit()
if args.eval:
if os.path.isdir(args.ckp):
print("=> loading checkpoint '{}'".format(args.ckp))
checkpoint = torch.load(os.path.join(args.ckp, "0.pth".format(torch.distributed.get_rank())),
map_location="cpu")
len_save = len([f for f in os.listdir(args.ckp) if "pth" in f])
assert len_save % torch.distributed.get_world_size() == 0
response_cnt = [i for i in range(
torch.distributed.get_rank() * (len_save // torch.distributed.get_world_size()),
(torch.distributed.get_rank() + 1) * (len_save // torch.distributed.get_world_size()))]
# merge all ckpts
for cnt, cnt_model in enumerate(response_cnt):
if cnt_model != 0:
checkpoint_specific = torch.load(os.path.join(args.ckp, "{}.pth".format(cnt_model)),
map_location="cpu")
if cnt != 0:
for key, item in checkpoint_specific["state_dict"].items():
checkpoint["state_dict"][key] = torch.cat([checkpoint["state_dict"][key], item],
dim=0)
else:
checkpoint["state_dict"].update(checkpoint_specific["state_dict"])
moe_dir_read = True
else:
print("=> loading checkpoint '{}'".format(args.ckp))
checkpoint = torch.load(args.ckp, map_location='cpu')
state_dict = checkpoint['state_dict']
# model = cvt_state_dict_(state_dict, model,args, linear_keyword, moe_dir_read)
msg = model.load_state_dict(state_dict, strict=False)
print('=================model unmatched keys:================',msg)
save_model_predictions(p, val_dataloader, model, args)
if args.distributed:
torch.distributed.barrier()
eval_stats = eval_all_results(p)
exit()
if args.resume:
if os.path.isdir(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(os.path.join(args.resume, "0.pth".format(torch.distributed.get_rank())),
map_location="cpu")
len_save = len([f for f in os.listdir(args.resume) if "pth" in f])
assert len_save % torch.distributed.get_world_size() == 0
response_cnt = [i for i in range(
torch.distributed.get_rank() * (len_save // torch.distributed.get_world_size()),
(torch.distributed.get_rank() + 1) * (len_save // torch.distributed.get_world_size()))]
# merge all ckpts
for cnt, cnt_model in enumerate(response_cnt):
if cnt_model != 0:
checkpoint_specific = torch.load(os.path.join(args.resume, "{}.pth".format(cnt_model)),
map_location="cpu")
if cnt != 0:
for key, item in checkpoint_specific["state_dict"].items():
checkpoint["state_dict"][key] = torch.cat([checkpoint["state_dict"][key], item],
dim=0)
else:
checkpoint["state_dict"].update(checkpoint_specific["state_dict"])
moe_dir_read = True
else:
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cpu')
state_dict = checkpoint['state_dict']
# model = cvt_state_dict_(state_dict, model,args, linear_keyword, moe_dir_read)
msg = model.load_state_dict(state_dict, strict=False)
print('=================model unmatched keys:================',msg)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
for cnt, cnt_model in enumerate(response_cnt):
print("=> loading checkpoint optimizer")
if cnt_model != 0:
optimizer.load_state_dict(checkpoint_specific['optimizer'])
else:
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
best_result = checkpoint['best_result']
else:
print(colored('No checkpoint file at {}'.format(p['checkpoint']), 'blue'))
start_epoch = 0
if args.distributed:
torch.distributed.barrier()
best_result = {'multi_task_performance':-200}
# Main loop
print(colored('Starting main loop', 'blue'))
for epoch in range(start_epoch, p['epochs']):
print(colored('Epoch %d/%d' %(epoch+1, p['epochs']), 'yellow'))
print(colored('-'*10, 'yellow'))
# Adjust lr
lr = adjust_learning_rate(p, optimizer, epoch)
print('Adjusted learning rate to {:.5f}'.format(lr))
# Train
print('Train ...')
eval_train = train_vanilla_distributed(args, p, train_dataloader, model, criterion, optimizer, epoch)
# Evaluate
# Check if need to perform eval first
if 'eval_final_10_epochs_only' in p.keys() and p['eval_final_10_epochs_only']: # To speed up -> Avoid eval every epoch, and only test during final 10 epochs.
if epoch + 1 > p['epochs']-10:
eval_bool = True
else:
eval_bool = False
else:
eval_bool = True
# Perform evaluation
if eval_bool:
print('Evaluate ...')
save_model_predictions(p, val_dataloader, model, args)
if args.distributed:
torch.distributed.barrier()
curr_result = eval_all_results(p)
# improves, best_result = validate_results_v2(p, curr_result, best_result)
improves, best_result = validate_results(p, curr_result, best_result)
print('Checkpoint ...')
save_state_dict = model.state_dict()
moe_save = p['backbone'] == 'VisionTransformer_moe' and (not args.moe_data_distributed)
save_checkpoint({
'epoch': epoch + 1,
'backbone': p['backbone'],
'state_dict': save_state_dict,
'best_result': best_result,
'optimizer' : optimizer.state_dict(),
}, improves, p, moe_save=moe_save)
if args.distributed:
torch.distributed.barrier()
torch.cuda.empty_cache()
# Evaluate best model at the end
if p['backbone'] == 'VisionTransformer_moe' and (not args.moe_data_distributed):
# state_dict = read_specific_group_experts(checkpoint['state_dict'], args.local_rank, args.moe_experts)
checkpoint_specific = torch.load(os.path.join(p['best_model'], "{}.pth".format(torch.distributed.get_rank())), map_location="cpu")
checkpoint = torch.load(os.path.join(p['best_model'], "0.pth".format(torch.distributed.get_rank())), map_location="cpu")
checkpoint["state_dict"].update(checkpoint_specific["state_dict"])
state_dict = checkpoint["state_dict"]
else:
# if args.local_rank==0:
print(colored('Evaluating best model at the end', 'blue'))
state_dict = torch.load(p['best_model'])['state_dict']
if args.distributed:
torch.distributed.barrier()
model.load_state_dict(state_dict)
save_model_predictions(p, val_dataloader, model, args)
if args.distributed:
torch.distributed.barrier()
eval_stats = eval_all_results(p)
def sanity_check(state_dict, pretrained_weights, linear_keyword):
"""
Linear classifier should not change any weights other than the linear layer.
This sanity check asserts nothing wrong happens (e.g., BN stats updated).
"""
print("=> loading '{}' for sanity check".format(pretrained_weights))
checkpoint = torch.load(pretrained_weights, map_location="cpu")
state_dict_pre = checkpoint['state_dict']
for k in list(state_dict.keys()):
# only ignore linear layer
if '%s.weight' % linear_keyword in k or '%s.bias' % linear_keyword in k:
continue
# name in pretrained model
k_pre = 'module.base_encoder.' + k[len('module.'):] \
if k.startswith('module.') else 'module.base_encoder.' + k
assert ((state_dict[k].cpu() == state_dict_pre[k_pre]).all()), \
'{} is changed in linear classifier training.'.format(k)
print("=> sanity check passed.")
if __name__ == "__main__":
main()