forked from matthp/Physionet2018_Challenge_Submission
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModelDefinition.py
executable file
·233 lines (178 loc) · 11.3 KB
/
ModelDefinition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.nn as nn
import torch.nn.functional as Functional
########################################################################################################################
# Functional blocks
class Normalizer(nn.Module):
def __init__(self, numChannels, momentum=0.985, channelNorm=True):
super(Normalizer, self).__init__()
self.momentum = momentum
self.numChannels = numChannels
self.channelNorm = channelNorm
self.register_buffer('movingAverage', torch.zeros(1, numChannels, 1))
self.register_buffer('movingVariance', torch.ones(1, numChannels, 1))
self.BatchNormScale = nn.Parameter(torch.ones(1, numChannels, 1))
self.BatchNormBias = nn.Parameter(torch.zeros(1, numChannels, 1))
def forward(self, x):
# Apply channel wise normalization
if self.channelNorm:
x = (x-torch.mean(x, dim=1, keepdim=True)) / (torch.std(x, dim=1, keepdim=True) + 0.00001)
# If in training mode, update moving per channel statistics
if self.training:
newMean = torch.mean(x, dim=2, keepdim=True)
self.movingAverage = ((self.momentum * self.movingAverage) + ((1 - self.momentum) * newMean)).detach()
x = x - self.movingAverage
newVariance = torch.mean(torch.pow(x, 2), dim=2, keepdim=True)
self.movingVariance = ((self.momentum * self.movingVariance) + ((1 - self.momentum) * newVariance)).detach()
x = x / (torch.sqrt(self.movingVariance) + 0.00001)
else:
x = (x - self.movingAverage) / (torch.sqrt(self.movingVariance) + 0.00001)
# Apply per channel affine transform
x = (x * torch.abs(self.BatchNormScale)) + self.BatchNormBias
return x
class SeperableDenseNetUnit(nn.Module):
"""
Module that defines a sequence of two convolutional layers with selu activation on both. Channel Normalization
and stochastic batch normalization with a per channel affine transform is applied before each non-linearity.
"""
def __init__(self, in_channels, out_channels, kernelSize,
groups=1, dilation=1, channelNorm=True):
super(SeperableDenseNetUnit, self).__init__()
# Store parameters
self.in_channels = in_channels
self.out_channels = out_channels
self.kernelSize = kernelSize
self.groups = groups
self.dilation = dilation
# Convolutional transforms
self.conv1 = nn.Conv1d(in_channels=in_channels, out_channels=in_channels, groups=in_channels, kernel_size=kernelSize,
padding=(kernelSize + ((kernelSize - 1) * (dilation - 1)) - 1) // 2, dilation=dilation)
self.conv2 = nn.Conv1d(in_channels=in_channels, out_channels=4*out_channels, groups=1, kernel_size=1,
padding=0, dilation=1)
self.conv3 = nn.Conv1d(in_channels=4*out_channels, out_channels=4*out_channels, groups=4*out_channels, kernel_size=kernelSize,
padding=(kernelSize + ((kernelSize - 1) * (dilation - 1)) - 1) // 2, dilation=dilation)
self.conv4 = nn.Conv1d(in_channels=4*out_channels, out_channels=out_channels, groups=1, kernel_size=1,
padding=0, dilation=1)
self.norm1 = Normalizer(numChannels=4 * out_channels, channelNorm=channelNorm)
self.norm2 = Normalizer(numChannels=out_channels, channelNorm=channelNorm)
def forward(self, x):
# Apply first convolution block
y = self.conv2(self.conv1(x))
y = self.norm1(y)
y = Functional.selu(y)
# Apply second convolution block
y = self.conv4(self.conv3(y))
y = self.norm2(y)
y = Functional.selu(y)
# Return densely connected feature map
return torch.cat((y, x), dim=1)
########################################################################################################################
# Define the Sleep model
class SkipLSTM(nn.Module):
"""
Module that defines a bidirectional LSTM model with a residual skip connection with transfer shape modulated with a
mapping 1x1 linear convolution. The output results from a second 1x1 convolution after a tanh nonlinearity,
critical to prevent divergence during training.
"""
def __init__(self, in_channels, out_channels=4, hiddenSize=32):
super(SkipLSTM, self).__init__()
# Store parameters
self.in_channels = in_channels
self.out_channels = out_channels
# Bidirectional LSTM to apply temporally across input channels
self.rnn = nn.LSTM(input_size=in_channels, hidden_size=hiddenSize, num_layers=1, batch_first=True, dropout=0.0,
bidirectional=True)
# Output convolution to map the LSTM hidden states from forward and backward pass to the output shape
self.outputConv1 = nn.Conv1d(in_channels=hiddenSize*2, out_channels=hiddenSize, groups=1, kernel_size=1, padding=0)
self.outputConv2 = nn.Conv1d(in_channels=hiddenSize, out_channels=out_channels, groups=1, kernel_size=1, padding=0)
# Residual mapping
self.identMap1 = nn.Conv1d(in_channels=in_channels, out_channels=hiddenSize, groups=1, kernel_size=1, padding=0)
def forward(self, x):
y = x.permute(0, 2, 1)
y, z = self.rnn(y)
z = None
y = y.permute(0, 2, 1)
y = Functional.tanh((self.outputConv1(y) + self.identMap1(x)) / 1.41421)
y = self.outputConv2(y)
return y
def marginalize(x):
p_joint = Functional.log_softmax(x, dim=1)
# Compute marginal for arousal predictions
p_arousal = p_joint[::, 3, ::]
x1 = torch.cat((torch.log(1 - torch.exp(p_arousal.unsqueeze(1))), p_arousal.unsqueeze(1)), dim=1)
# Compute marginal for apnea predictions
p_apnea = p_joint[::, 1, ::]
x2 = torch.cat((torch.log(1 - torch.exp(p_apnea.unsqueeze(1))), p_apnea.unsqueeze(1)), dim=1)
# Compute marginal for sleep/wake predictions
p_wake = p_joint[::, 0, ::]
x3 = torch.cat((p_wake.unsqueeze(1), torch.log(1 - torch.exp(p_wake.unsqueeze(1)))), dim=1)
return x1, x2, x3
class Sleep_model_MultiTarget(nn.Module):
def __init__(self, numSignals=12):
super(Sleep_model_MultiTarget, self).__init__()
self.channelMultiplier = 2
self.kernelSize = 25
self.numSignals = numSignals
# Set up downsampling densenet blocks
self.dsMod1 = SeperableDenseNetUnit(in_channels=self.numSignals, out_channels=self.channelMultiplier*self.numSignals,
kernelSize=(2*self.kernelSize)+1, groups=1, dilation=1, channelNorm=False)
self.dsMod2 = SeperableDenseNetUnit(in_channels=(self.channelMultiplier+1)*self.numSignals, out_channels=self.channelMultiplier*self.numSignals,
kernelSize=(2*self.kernelSize)+1, groups=1, dilation=1, channelNorm=False)
self.dsMod3 = SeperableDenseNetUnit(in_channels=((2*self.channelMultiplier)+1)*self.numSignals, out_channels=self.channelMultiplier*self.numSignals,
kernelSize=(2*self.kernelSize)+1, groups=1, dilation=1, channelNorm=False)
# Set up densenet modules
self.denseMod1 = SeperableDenseNetUnit(in_channels=((3 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=1, channelNorm=True)
self.denseMod2 = SeperableDenseNetUnit(in_channels=((4 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=2, channelNorm=True)
self.denseMod3 = SeperableDenseNetUnit(in_channels=((5 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=4, channelNorm=True)
self.denseMod4 = SeperableDenseNetUnit(in_channels=((6 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=8, channelNorm=True)
self.denseMod5 = SeperableDenseNetUnit(in_channels=((7 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=16, channelNorm=True)
self.denseMod6 = SeperableDenseNetUnit(in_channels=((8 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=32, channelNorm=True)
self.denseMod7 = SeperableDenseNetUnit(in_channels=((9 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=16, channelNorm=True)
self.denseMod8 = SeperableDenseNetUnit(in_channels=((10 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=8, channelNorm=True)
self.denseMod9 = SeperableDenseNetUnit(in_channels=((11 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=4, channelNorm=True)
self.denseMod10 = SeperableDenseNetUnit(in_channels=((12 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=2, channelNorm=True)
self.denseMod11 = SeperableDenseNetUnit(in_channels=((13 * self.channelMultiplier) + 1) * self.numSignals, out_channels=self.channelMultiplier * self.numSignals,
kernelSize=self.kernelSize, groups=1, dilation=1, channelNorm=True)
self.skipLSTM = SkipLSTM(((14*self.channelMultiplier)+1)*self.numSignals, hiddenSize=self.channelMultiplier*64, out_channels=4)
def cuda(self, device=None):
self.skipLSTM.rnn = self.skipLSTM.rnn.cuda(device)
return super(Sleep_model_MultiTarget, self).cuda(device)
def forward(self, x):
x = x.detach().contiguous()
# Downsampling to 1 entity per second
x = self.dsMod1(x)
x = Functional.max_pool1d(x, kernel_size=2)
x = self.dsMod2(x)
x = Functional.max_pool1d(x, kernel_size=5)
x = self.dsMod3(x)
x = Functional.max_pool1d(x, kernel_size=5)
# Dilated Densenet
x = self.denseMod1(x)
x = self.denseMod2(x)
x = self.denseMod3(x)
x = self.denseMod4(x)
x = self.denseMod5(x)
x = self.denseMod6(x)
x = self.denseMod7(x)
x = self.denseMod8(x)
x = self.denseMod9(x)
x = self.denseMod10(x)
x = self.denseMod11(x)
# Bidirectional skip LSTM and convert joint predictions to marginal predictions
x = self.skipLSTM(x)
x1, x2, x3 = marginalize(x)
if not(self.training):
x1 = torch.exp(x1)
x2 = torch.exp(x2)
x3 = torch.exp(x3)
return (x1, x2, x3)