diff --git a/week04/Exercise- Looking for location of largest earthquake.ipynb b/week04/Exercise- Looking for location of largest earthquake.ipynb new file mode 100644 index 0000000..963a0b2 --- /dev/null +++ b/week04/Exercise- Looking for location of largest earthquake.ipynb @@ -0,0 +1,139 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import requests\n", + "import json\n", + "import numpy as np " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#reads in data from the internet url given \n", + "quakes = requests.get(\"http://earthquake.usgs.gov/fdsnws/event/1/query.geojson\",\n", + " params={\n", + " 'starttime': \"2000-01-01\",\n", + " \"maxlatitude\": \"58.723\",\n", + " \"minlatitude\": \"50.008\",\n", + " \"maxlongitude\": \"1.67\",\n", + " \"minlongitude\": \"-9.756\",\n", + " \"minmagnitude\": \"1\",\n", + " \"endtime\": \"2018-10-11\",\n", + " \"orderby\": \"time-asc\"})" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "#reads in data using json as a dictionary\n", + "earthquakes = json.loads(quakes.text)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "120" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#assuming count is the number of counted earthquakes in this dictionary\n", + "earthquakes['metadata']['count']" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "120" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# creates a list of all the magnitudes of the earthquakes \n", + "eq_size = [earthquakes['features'][i]['properties']['mag'] for i in range(earthquakes['metadata']['count'])]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# searches for the location of the largest earthquake within list eq_size\n", + "# location is stored as a list\n", + "location = [j for j in range(len(eq_size)) if eq_size[j] == np.max(eq_size)]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'England, United Kingdom'" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# gives location of the largest earthqukes\n", + "earthquakes['features'][location[0]]['properties']['place']" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/week04/issue no 34.ipynb b/week04/issue no 34.ipynb new file mode 100644 index 0000000..c471699 --- /dev/null +++ b/week04/issue no 34.ipynb @@ -0,0 +1,156 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import requests\n", + "import json\n", + "import numpy as np " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#reads in data from the internet url given \n", + "quakes = requests.get(\"http://earthquake.usgs.gov/fdsnws/event/1/query.geojson\",\n", + " params={\n", + " 'starttime': \"2000-01-01\",\n", + " \"maxlatitude\": \"58.723\",\n", + " \"minlatitude\": \"50.008\",\n", + " \"maxlongitude\": \"1.67\",\n", + " \"minlongitude\": \"-9.756\",\n", + " \"minmagnitude\": \"1\",\n", + " \"endtime\": \"2018-10-11\",\n", + " \"orderby\": \"time-asc\"})\n", + "#reads in data using json as a dictionary\n", + "earthquakes = json.loads(quakes.text)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "earthquakes.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "#year = int(earthquakes['features'][0]['properties']['time']/(1000*60*60*24*365) + 1970)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "year_count ={}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for earthquake in earthquakes['features']:\n", + " year = (int(earthquake['properties']['time']/(1000*60*60*24*365) +1970))\n", + " if year in year_count:\n", + " year_count[year] +=1\n", + " else:\n", + " year_count[year] = 1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "year_count" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(2000.0, 2018.0)" + ] + }, + "metadata": {}, + "execution_count": 38 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD4CAYAAAAHHSreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAS2klEQVR4nO3df6xcZ33n8fenTlKJEDWAL6nzC0e72WhdtAnplQubbhVKQ22Hbbotam2tIO3SdYOIRKT+UbOV2q7aP9zuQltqROrdRIBEQ0GQkt0YQhRRhaz4dRM5iVPHxESuYhzFBrQJKJVYs9/+McfS9D4zvjdz5s7coPdLGs05z3nOc76eeW4+OTNzZlJVSJI07MfmXYAkaf0xHCRJDcNBktQwHCRJDcNBktQ4Z94FjLJx48bavHnzvMuQpJeNhx9++NtVtTCt8dZlOGzevJmlpaV5lyFJLxtJ/mGa4/mykiSpYThIkhqGgySpYThIkhqGgySpYThIkhqGgySpYThIkhqGgySpsS6vkJ6HzXvunXjfY3tvnGIlkjR/njlIkhqGgySpYThIkhqGgySpYThIkhorhkOSy5J8McnhJE8keW/X/uok9yd5qrt/1Zj9tyU5kuRokj3T/gdIkqZvNWcOp4Hfqap/DbwReE+SLcAe4IGquhJ4oFv/Z5JsAD4EbAe2ALu6fSVJ69iK4VBVz1bVI93y94DDwCXATcBHu24fBX55xO5bgaNV9XRV/QD4RLefJGkde0nvOSTZDLwB+CpwUVU9C4MAAV47YpdLgGeG1o93bZKkdWzV4ZDklcCngduq6oXV7jaircaMvzvJUpKlU6dOrbYsSdIaWFU4JDmXQTB8vKo+0zU/l2RTt30TcHLErseBy4bWLwVOjDpGVe2vqsWqWlxYWFht/ZKkNbCaTysFuAM4XFUfGNp0D3Bzt3wz8NkRu38duDLJFUnOA3Z2+0mS1rHVnDlcB7wD+PkkB7vbDmAvcEOSp4AbunWSXJzkAEBVnQZuBe5j8Eb2J6vqiTX4d0iSpmjFb2WtqocY/d4BwFtG9D8B7BhaPwAcmLRASdLseYW0JKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGit+Zbe0VjbvuXfifY/tvXGKlUhazjMHSVJjxTOHJHcCbwNOVtXru7a/Aa7qulwI/N+qumbEvseA7wE/BE5X1eKU6pYkraHVvKz0EWAf8LEzDVX162eWk7wfeP4s+7+5qr49aYGSpNlbzc+EPphk86htSQL8GvDz0y1LkjRPfd9z+HfAc1X11JjtBXwhycNJdp9toCS7kywlWTp16lTPsiRJffQNh13AXWfZfl1VXQtsB96T5OfGdayq/VW1WFWLCwsLPcuSJPUxcTgkOQf4FeBvxvWpqhPd/UngbmDrpMeTJM1OnzOHXwCerKrjozYmOT/JBWeWgbcCh3ocT5I0IyuGQ5K7gC8DVyU5nuRd3aadLHtJKcnFSQ50qxcBDyV5FPgacG9VfX56pUuS1spqPq20a0z7b4xoOwHs6JafBq7uWZ8kaQ68QlqS1DAcJEkNw0GS1DAcJEkNw0GS1DAcJEkNw0GS1DAcJEkNw0GS1DAcJEkNw0GS1DAcJEkNw0GS1DAcJEkNw0GS1DAcJEmN1fwS3J1JTiY5NNT2h0m+leRgd9sxZt9tSY4kOZpkzzQLlyStndWcOXwE2Dai/c+q6prudmD5xiQbgA8B24EtwK4kW/oUK0majRXDoaoeBL47wdhbgaNV9XRV/QD4BHDTBONIkmasz3sOtyZ5rHvZ6VUjtl8CPDO0frxrGynJ7iRLSZZOnTrVoyxJUl+ThsOHgX8BXAM8C7x/RJ+MaKtxA1bV/qparKrFhYWFCcuSJE3DROFQVc9V1Q+r6v8D/4PBS0jLHQcuG1q/FDgxyfEkSbM1UTgk2TS0+h+AQyO6fR24MskVSc4DdgL3THI8SdJsnbNShyR3AdcDG5McB/4AuD7JNQxeJjoG/HbX92Lgf1bVjqo6neRW4D5gA3BnVT2xJv8KSdJUrRgOVbVrRPMdY/qeAHYMrR8Amo+5SpLWN6+QliQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1VgyHJHcmOZnk0FDbf0vyZJLHktyd5MIx+x5L8niSg0mWplm4JGntrObM4SPAtmVt9wOvr6p/A3wDeN9Z9n9zVV1TVYuTlShJmrUVw6GqHgS+u6ztC1V1ulv9CnDpGtQmSZqTabzn8J+Az43ZVsAXkjycZPcUjiVJmoEVf0P6bJL8HnAa+PiYLtdV1YkkrwXuT/JkdyYyaqzdwG6Ayy+/vE9ZkqSeJj5zSHIz8DbgP1ZVjepTVSe6+5PA3cDWceNV1f6qWqyqxYWFhUnLkiRNwUThkGQb8LvAL1XVi2P6nJ/kgjPLwFuBQ6P6SpLWl9V8lPUu4MvAVUmOJ3kXsA+4gMFLRQeT3N71vTjJgW7Xi4CHkjwKfA24t6o+vyb/CknSVK34nkNV7RrRfMeYvieAHd3y08DVvarTurR5z70T73ts741TrETSWvEKaUlSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDVW80twdyY5meTQUNurk9yf5Knu/lVj9t2W5EiSo0n2TLNwSdLaWc2Zw0eAbcva9gAPVNWVwAPd+j+TZAPwIWA7sAXYlWRLr2olSTOxYjhU1YPAd5c13wR8tFv+KPDLI3bdChytqqer6gfAJ7r9JEnr3KTvOVxUVc8CdPevHdHnEuCZofXjXdtISXYnWUqydOrUqQnLkiRNw1q+IZ0RbTWuc1Xtr6rFqlpcWFhYw7IkSSuZNByeS7IJoLs/OaLPceCyofVLgRMTHk+SNEOThsM9wM3d8s3AZ0f0+TpwZZIrkpwH7Oz2kyStc6v5KOtdwJeBq5IcT/IuYC9wQ5KngBu6dZJcnOQAQFWdBm4F7gMOA5+sqifW5p8hSZqmc1bqUFW7xmx6y4i+J4AdQ+sHgAMTVydJmguvkJYkNQwHSVLDcJAkNQwHSVJjxTek17vNe+6deN9je2+cYiWaJ+eBNF2eOUiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGhOHQ5Krkhwcur2Q5LZlfa5P8vxQn9/vX7Ikaa1N/MV7VXUEuAYgyQbgW8DdI7p+qareNulxJEmzN62Xld4CfLOq/mFK40mS5mha4bATuGvMtjcleTTJ55L81LgBkuxOspRk6dSpU1MqS5I0id7hkOQ84JeAT43Y/Ajwuqq6GvhL4G/HjVNV+6tqsaoWFxYW+pYlSephGmcO24FHquq55Ruq6oWq+n63fAA4N8nGKRxTkrSGphEOuxjzklKSn0ySbnlrd7zvTOGYkqQ11OtnQpO8ArgB+O2htlsAqup24O3Au5OcBv4R2FlV1eeYkqS11yscqupF4DXL2m4fWt4H7OtzDEnSQJ/fSn+pvEJaktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktTodYW01t6kV0Qe23vjVMYZNZYEzqkfdZ45SJIahoMkqWE4SJIahoMkqWE4SJIavcIhybEkjyc5mGRpxPYk+WCSo0keS3Jtn+NJkmZjGh9lfXNVfXvMtu3Ald3tZ4APd/eSpHVsrV9Wugn4WA18BbgwyaY1PqYkqae+Zw4FfCFJAX9VVfuXbb8EeGZo/XjX9uzygZLsBnYDXH755T3Lmi8vDpLmw7+96el75nBdVV3L4OWj9yT5uWXbM2KfGjVQVe2vqsWqWlxYWOhZliSpj17hUFUnuvuTwN3A1mVdjgOXDa1fCpzoc0xJ0tqbOBySnJ/kgjPLwFuBQ8u63QO8s/vU0huB56uqeUlJkrS+9HnP4SLg7iRnxvnrqvp8klsAqup24ACwAzgKvAj8Zr9yJUmzMHE4VNXTwNUj2m8fWi7gPZMeQ5I0H14hLUlqGA6SpIbhIElqGA6SpIY/Eyq9DHjlr2bNMwdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1DAdJUmNdXiH9+LeeH3tFqFd7aq1NejWyc3NyPubrj2cOkqRGn58JvSzJF5McTvJEkveO6HN9kueTHOxuv9+vXEnSLPR5Wek08DtV9Uj3W9IPJ7m/qv5+Wb8vVdXbehxHkjRjE585VNWzVfVIt/w94DBwybQKkyTNz1Tec0iyGXgD8NURm9+U5NEkn0vyU2cZY3eSpSRLP3zx+WmUJUmaUO9wSPJK4NPAbVX1wrLNjwCvq6qrgb8E/nbcOFW1v6oWq2pxwyt+om9ZkqQeeoVDknMZBMPHq+ozy7dX1QtV9f1u+QBwbpKNfY4pSVp7fT6tFOAO4HBVfWBMn5/s+pFka3e870x6TEnSbPT5tNJ1wDuAx5Mc7Nr+C3A5QFXdDrwdeHeS08A/AjurqnocU5I0AxOHQ1U9BGSFPvuAfZMeQ5Je7l6uv//tFdKSpIbhIElqGA6SpIbhIElqGA6SpIbhIElqGA6SpIbhIElqGA6SpMa6/A1p6UfBy/XKWAk8c5AkjWA4SJIahoMkqWE4SJIahoMkqWE4SJIafX9DeluSI0mOJtkzYnuSfLDb/liSa/scT5I0G31+Q3oD8CFgO7AF2JVky7Ju24Eru9tu4MOTHk+SNDt9zhy2Aker6umq+gHwCeCmZX1uAj5WA18BLkyyqccxJUkzkKqabMfk7cC2qvqtbv0dwM9U1a1Dff43sLf7vWmSPAD8blUtjRhvN4OzC4DXA4cmKmztbAS+Pe8ilrGm1VmPNcH6rMuaVmc91nRVVV0wrcH6fH1GRrQtT5rV9Bk0Vu0H9gMkWaqqxR61TZ01rY41rd56rMuaVme91jTN8fq8rHQcuGxo/VLgxAR9JEnrTJ9w+DpwZZIrkpwH7ATuWdbnHuCd3aeW3gg8X1XP9jimJGkGJn5ZqapOJ7kVuA/YANxZVU8kuaXbfjtwANgBHAVeBH5zlcPvn7SuNWRNq2NNq7ce67Km1fmRr2niN6QlST+6vEJaktQwHCRJjZmEQ5LLknwxyeEkTyR5b9f+6iT3J3mqu3/V0D7v675240iSXxxq/+kkj3fbPphk1MdlZ1ZTklckuTfJk904e9fD4zS0/Z4kE18zMuXn7rwk+5N8o3u8fnUd1LSrm0+PJfl8ko2T1DRJXUle0/X/fpJ9y8aayzwfV9M85/nZHqehMWc6z1d47uYyz1eo6aXP86pa8xuwCbi2W74A+AaDr9z4U2BP174H+JNueQvwKPDjwBXAN4EN3bavAW9icA3F54Dt86wJeAXw5q7PecCX5l3T0Hi/Avw1cGidPHf/FfjjbvnHgI1zfu7OAU6eqaPb/w9n+FidD/wscAuwb9lY85rnI2ua8zwf+zjNcZ6f7bmb1zwf99xNNM8neiD73oDPAjcAR4BNQw/EkW75fcD7hvrf1/2hbAKeHGrfBfzVPGsaMc5fAP953jUBrwQe6ibTxH80U67pGeD8dTSfzgVOAa9j8B/h24Hds6prqN9vLPtjnts8H1fTPOf52Wqa1zxfoaa5zPOzzKeJ5vnM33NIshl4A/BV4KLqrnvo7l/bdbuEwQN8xvGu7ZJueXn7PGsaHudC4N8DD6yDmv4IeD+DjxBPRZ+auscG4I+SPJLkU0kummdNVfX/gHcDjzO4OHMLcEffml5CXePMc56vZpxZz/Ozmdc8H7fvPOf5SJPO85mGQ5JXAp8GbquqF87WdURbnaV9njWdGecc4C7gg1X19DxrSnIN8C+r6u4+dUyzJgantpcC/6eqrgW+DPz3edaU5FwGfzRvAC4GHmNwltHLS6hr7BAj2mY1z1caZx7zfNz+85zn48xzno/bf6J5PrNw6Ar8NPDxqvpM1/xcum9p7e5Pdu3jvnbjeLe8vH2eNZ2xH3iqqv580nqmWNObgJ9OcozBKfe/SvJ3c67pOwz+7+7MH/KngIl/32NKNV0DUFXfrMH59yeBfztpTRPUNc485/lK5jHPx5nnPB9nnvN8nInm+aw+rRQGpzGHq+oDQ5vuAW7ulm9m8JramfadSX48yRUMfg/ia90p1PeSvLEb851D+8ylpm6sPwZ+ArhtklqmXVNVfbiqLq6qzQzeoPpGVV0/55oK+F/AmTreAvz9PGsCvgVsSbLQ9bsBODxJTRPWNdKc5/nZxprXPB9pzvN8XE3znOfjTDbPp/2myZg3Un6WwWnxY8DB7rYDeA2D1y2f6u5fPbTP7zH4VMkRhj4VASwy+DrvbwL76K7ynldNDP6vrroH+8w4vzXvx2lo+2b6fYpjms/d64AHu7EeAC5fBzXd0j13jzH4o37NjB+rY8B3ge8zOGPYsg7meVPTOpjnIx+nOc/zcc/dPOf5uJpe8jz36zMkSQ2vkJYkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNf4Jwd4NmdhgZn4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.bar(year_count.keys(), year_count.values())\n", + "plt.xlim(2000,2018)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ] +} \ No newline at end of file diff --git a/week04/quakes.py b/week04/quakes.py index fdd6cfd..253f364 100644 --- a/week04/quakes.py +++ b/week04/quakes.py @@ -1,19 +1,35 @@ """A script to find the biggest earthquake in an online dataset.""" -# At the top of the file, import any libraries you will use. -# import ... +import requests +import json +import numpy as np -# If you want, you can define some functions to help organise your code. -# def helper_function(argument_1, argument_2): -# ... -# When you run the file, it should print out the location and magnitude -# of the biggest earthquake. -# You can run the file with `python quakes.py` from this directory. if __name__ == "__main__": - # ...do things here to find the results... + #reads in data from the internet url given + quakes = requests.get("http://earthquake.usgs.gov/fdsnws/event/1/query.geojson", + params={ + 'starttime': "2000-01-01", + "maxlatitude": "58.723", + "minlatitude": "50.008", + "maxlongitude": "1.67", + "minlongitude": "-9.756", + "minmagnitude": "1", + "endtime": "2018-10-11", + "orderby": "time-asc"}) + #reads in data using json as a dictionary + earthquakes = json.loads(quakes.text) - # The lines below assume that the results are stored in variables - # named max_magnitude and coords, but you can change that. - print(f"The maximum magnitude is {max_magnitude} " - f"and it occured at coordinates {coords}.") + # creates a list of all the magnitudes of the earthquakes + eq_size = [earthquakes['features'][i]['properties']['mag'] for i in range(earthquakes['metadata']['count'])] + + + # searches for the location of the largest earthquake within list eq_size + # location is stored as a list + location = [j for j in range(len(eq_size)) if eq_size[j] == np.max(eq_size)] + + # gives location of the largest earthqukes + geog_location = earthquakes['features'][location[0]]['properties']['place'] + + print(f"The maximum magnitude is {np.max(eq_size)} " + f"and it occured at {geog_location}.")