-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgem_gkps_adi.F90
438 lines (372 loc) · 14.4 KB
/
gem_gkps_adi.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
subroutine gkps_adiabatic_electron(nstep,ip)
use gem_com
use gem_equil
use gem_fft_wrapper
implicit none
! input variables
integer :: nstep,ip
! global variables for matrix implement
integer :: ifirst
integer,dimension(:,:,:,:),allocatable :: ipiv
integer,dimension(:,:),allocatable :: ipiv_zonal
real,dimension(:,:,:),allocatable :: formphi
complex,dimension(:,:,:,:),allocatable :: mx
complex,dimension(:,:),allocatable :: mx_zonal
! local variables for matrix implement
integer :: i,j,k,l,m,n,i1,k1,m1,ns,ix,ikx,icount,INFO
real :: r,th,wx0,wx1,wz0,wz1,kx1,kx2,ky,gam0,gam1,sgny, &
bfldp,dydrp,qhatp,grp,gthp,gxdgyp,grdgtp,dum
real,dimension(1:5) :: b1,b2,ter
real :: gamb1(1:5,0:imx-1,0:jcnt-1,0:imx-1,0:1),gamb2(1:5,0:imx-1,0:jcnt-1,0:imx-1,0:1), &
jacob_theta(imx-1),jacob_theta_tmp(imx-1)
complex :: mx0(imx-1,imx-1,0:jcnt-1,0:1),mx_tmp(imx-1,imx-1)
character(len=70) fname
character(len=5) holdmyid
! the local variables for field solver
integer :: myj
real :: u(0:imx,0:jmx,0:1),u_zonal(0:imx,0:jmx,0:1), &
rho_zonal_tmp(0:imx,0:1),rho_zonal(0:imx,0:1),jacob_rho_tmp(0:imx,0:1),jacob_rho(0:imx,0:1)
complex :: v(0:imx-1,0:jcnt-1,0:1),v_zonal(0:imx-1,0:jcnt-1,0:1),sl(1:imx-1,0:jcnt-1,0:1),temp3dxy(0:imx-1,0:jmx-1,0:1)
real :: phizold(0:imx),phiz(0:imx)
! save the global variables
save ifirst,mx,mx_zonal,ipiv,ipiv_zonal,formphi
if(idg==1)write(*,*)'enter gkps'
write(holdmyid,'(I5.5)') MyId
fname='./matrix/'//'mx_phi_'//holdmyid
! form factors....
if(ifirst.ne.-99)then
allocate(mx(imx-1,imx-1,0:jcnt-1,0:1),mx_zonal(imx-1,imx-1))
allocate(ipiv(imx-1,imx-1,0:jcnt-1,0:1),ipiv_zonal(imx-1,imx-1))
allocate(formphi(0:imx-1,0:jcnt-1,0:1))
mx=0.0
mx_zonal=0.0
mx0=0.0
mx_tmp=0.0
! restart the matrix
if(igetmx.eq.1)then
open(10000+MyId,file=fname,form='unformatted',status='old')
read(10000+MyId)mx,mx_zonal,ipiv,ipiv_zonal
close(10000+myid)
goto 200
end if
! construct the matrix for poisson solver
do l=0,im-1
do m=0,jcnt-1
j=tclr*jcnt+m
do i=0,im-1
r=lr0-lx/2+i*dx
i1=int((r-rin)/dr)
i1=min(i1,nr-1)
wx0=(rin+(i1+1)*dr-r)/dr
wx1=1.-wx0
do ns=1,nsm
ter(ns)=wx0*t0s(ns,i1)+wx1*t0s(ns,i1+1)
enddo
do n=0,1
k=gclr*kcnt+n
k1=int(k*dz/delz)
k1=min(k1,ntheta-1)
wz0=((k1+1)*delz-dz*k)/delz
wz1=1-wz0
th=wz0*thfnz(k1)+wz1*thfnz(k1+1)
k=int((th+pi)/dth)
k=min(k,ntheta-1)
wz0=(-pi+(k+1)*dth-th)/dth
wz1=1.-wz0
bfldp=wx0*wz0*bfld(i1,k)+wx0*wz1*bfld(i1,k+1) &
+wx1*wz0*bfld(i1+1,k)+wx1*wz1*bfld(i1+1,k+1)
dydrp=wx0*wz0*dydr(i1,k)+wx0*wz1*dydr(i1,k+1) &
+wx1*wz0*dydr(i1+1,k)+wx1*wz1*dydr(i1+1,k+1)
qhatp=wx0*wz0*qhat(i1,k)+wx0*wz1*qhat(i1,k+1) &
+wx1*wz0*qhat(i1+1,k)+wx1*wz1*qhat(i1+1,k+1)
grp=wx0*wz0*gr(i1,k)+wx0*wz1*gr(i1,k+1) &
+wx1*wz0*gr(i1+1,k)+wx1*wz1*gr(i1+1,k+1)
gthp=wx0*wz0*gth(i1,k)+wx0*wz1*gth(i1,k+1) &
+wx1*wz0*gth(i1+1,k)+wx1*wz1*gth(i1+1,k+1)
gxdgyp=wx0*wz0*gxdgy(i1,k)+wx0*wz1*gxdgy(i1,k+1) &
+wx1*wz0*gxdgy(i1+1,k)+wx1*wz1*gxdgy(i1+1,k+1)
grdgtp=wx0*wz0*grdgt(i1,k)+wx0*wz1*grdgt(i1,k+1) &
+wx1*wz0*grdgt(i1+1,k)+wx1*wz1*grdgt(i1+1,k+1)
m1=mstart+int((real(m)+1.0)/2)
if(m==0)m1=0
sgny=isgnft(m)
ky=sgny*2.*pi*real(m1)/ly
kx1=pi*real(l)/lx
kx2=-pi*real(l)/lx
! the b+ and b- value
do ns=1,nsm
b1(ns)=mims(ns)*(kx1*kx1*grp**2 + &
ky*ky*(dydrp**2*grp**2+(lr0/q0*qhatp*gthp)**2 &
+2*dydrp*lr0/q0*qhatp*grdgtp) &
+2*kx1*ky*gxdgyp)/(bfldp*bfldp)*ter(ns)/(q(ns)*q(ns))
b2(ns)=mims(ns)*(kx2*kx2*grp**2 + &
ky*ky*(dydrp**2*grp**2+(lr0/q0*qhatp*gthp)**2 &
+2*dydrp*lr0/q0*qhatp*grdgtp) &
+2*kx2*ky*gxdgyp)/(bfldp*bfldp)*ter(ns)/(q(ns)*q(ns))
! construct the Gamma(b+) and Gamma(b-)
call srcbes(b1(ns),gam0,gam1)
gamb1(ns,l,m,i,n)=gam0
call srcbes(b2(ns),gam0,gam1)
gamb2(ns,l,m,i,n)=gam0
enddo
! formfactor in gkps
formphi(l,m,n) = 1./jmx
if(abs(ky)>kycut)formphi(l,m,n) = 0.
if(m1.ne.mlk.and.onemd==1)formphi(l,m,n) = 0.
enddo
enddo
enddo
enddo
! construct the matrix MX for Poisson sovler
do k=0,1
do j=0,jcnt-1
do i=1,imx-1
r=lr0-lx/2+i*dx
i1=int((r-rin)/dr)
i1=min(i1,nr-1)
wx0=(rin+(i1+1)*dr-r)/dr
wx1=1.-wx0
do ns=1,nsm
ter(ns)=wx0*t0s(ns,i1)+wx1*t0s(ns,i1+1)
enddo
do ix=1,imx-1
mx(i,ix,j,k)=0.0
mx0(i,ix,j,k)=0.0
! the adiabatic response of electron, the option is fradi
if(i==ix)mx(i,ix,j,k) = fradi*gn0e(i)*cn0e/gt0e(i)
do ikx=0,imx-1
do ns=1,nsm
! the matrix MX with adiabatic electron
mx(i,ix,j,k)=mx(i,ix,j,k)+q(ns)*sin(ix*ikx*pi/imx)* &
((1-gamb1(ns,ikx,j,i,k))*exp(IU*ikx*i*pi/imx)- &
(1-gamb2(ns,ikx,j,i,k))*exp(-IU*ikx*i*pi/imx)) &
/ter(ns)*cn0s(ns)*gn0s(ns,i)/(IU*imx)
! the matrix MX0 without adiabatic electron for the calcaulation of MX_zonal jycheng
mx0(i,ix,j,k)=mx0(i,ix,j,k)+q(ns)*sin(ix*ikx*pi/imx)* &
((1-gamb1(ns,ikx,j,i,k))*exp(IU*ikx*i*pi/imx)- &
(1-gamb2(ns,ikx,j,i,k))*exp(-IU*ikx*i*pi/imx)) &
/ter(ns)*cn0s(ns)*gn0s(ns,i)/(IU*imx)
enddo
enddo
enddo
enddo
enddo
enddo
! begin to calculate the MX_zonal jycheng
mx_zonal=0.0
do i=1,imx-1
do ix=1,imx-1
! only consider the ky=0 part
mx_zonal(i,ix)=mx0(i,ix,0,0)*jac(i,0)
jacob_theta(i)=jac(i,0)
enddo
enddo
! flux average of mx0
mx_tmp=0.0
icount=(imx-1)*(imx-1)
call MPI_ALLREDUCE(mx_zonal,mx_tmp,icount,MPI_DOUBLE_COMPLEX,MPI_SUM,TUBE_COMM,ierr)
mx_zonal=mx_tmp
jacob_theta_tmp=0.0
icount=(imx-1)
call MPI_ALLREDUCE(jacob_theta,jacob_theta_tmp,icount,MPI_REAL8,MPI_SUM,TUBE_COMM,ierr)
jacob_theta=jacob_theta_tmp
do i=1,imx-1
do ix=1,imx-1
mx_zonal(i,ix)=mx_zonal(i,ix)/jacob_theta(i)
enddo
enddo
! mx_zonal(:,:)=cmplx(real(mx_zonal(:,:),0.0)
! mx(:,:,0,:)=cmplx(real(mx(:,:,0,:)),0.0)
!$omp target data map(tofrom:mx_zonal,ipiv_zonal,INFO)
!$omp dispatch
call ZGETRF(imx-1,imx-1,mx_zonal(:,:),imx-1,ipiv_zonal(:,:),INFO )
!$omp end target data
!$omp target data map(tofrom:mx,ipiv,INFO)
do k=0,1
do j=0,jcnt-1
!$omp dispatch
call ZGETRF(imx-1,imx-1,mx(:,:,j,k),imx-1,ipiv(:,:,j,k),INFO )
enddo
enddo
!$omp end target data
! save the matrix for restart
if(igetmx.eq.0) then
open(10000+MyId,file=fname,form='unformatted',status='unknown')
write(10000+MyId)mx,mx_zonal,ipiv,ipiv_zonal
close(10000+myid)
goto 200
end if
! write the mx,mx_zonal with ky=0,k=0
if(gclr==kmx/2.and.tclr==0.and.nstep==0)then
open(20,file="mx",status='unknown')
j=0
k=0
do i=1,imx-1
do ix=1,imx-1
if(abs(i-ix)<40)write(20,10)i,ix,mx(i,ix,j,k),mx_zonal(ix,i)
enddo
enddo
10 format(1x,i5,1x,i5,2(2x,e12.5,2x,e12.5))
close(20)
end if
200 ifirst=-99
endif
if(idg==1)write(*,*)'pass form factors'
!now do field solve...
! calcaulte the zonal part of density
do i=0,im
do k=0,1
rho_zonal_tmp(i,k)=0.0
jacob_rho_tmp(i,k)=0.0
do j=0,jm-1
rho_zonal_tmp(i,k)=rho_zonal_tmp(i,k)+rho(i,j,k)*jac(i,k)
jacob_rho_tmp(i,k)=jacob_rho_tmp(i,k)+jac(i,k)
enddo
enddo
enddo
rho_zonal=0.0
icount=(im+1)*2
call MPI_ALLREDUCE(rho_zonal_tmp,rho_zonal,icount,MPI_REAL8,MPI_SUM,mpi_comm_world,ierr)
jacob_rho=0.0
icount=(im+1)*2
call MPI_ALLREDUCE(jacob_rho_tmp,jacob_rho,icount,MPI_REAL8,MPI_SUM,TUBE_COMM,ierr)
do i=0,im
do k=0,1
rho_zonal(i,k)=rho_zonal(i,k)/jacob_rho(i,k)
enddo
enddo
! different source term for zonal and non-zonal term
do i=0,nxpp
do j=0,jm
do k=0,1
u(i,j,k)=rho(i,j,k)
! expand the zonal source term into x and y dimension
u_zonal(i,j,k)=rho_zonal(i,k)
enddo
enddo
enddo
! expand the source term into sin tranformation
call dcmpy(u(0:imx-1,0:jmx-1,0:1),v)
call dcmpy(u_zonal(0:imx-1,0:jmx-1,0:1),v_zonal)
temp3dxy=0.0
! solve the zonal-phi
!$omp target data map(tofrom:jft,sl,v_zonal,mx_zonal,ipiv_zonal,INFO,temp3dxy)
do k=0,1
j=0
myj=jft(j)
sl(1:imx-1,j,k)=v_zonal(1:imx-1,j,k)
! solve the MX_zonal
!$omp dispatch
call ZGETRS('N',imx-1,1,mx_zonal(:,:),imx-1,ipiv_zonal(:,:), &
sl(:,j,k),imx-1,INFO)
temp3dxy(1:imx-1,myj,k)=sl(1:imx-1,j,k)
temp3dxy(0,myj,k)=0.
enddo
!$omp end target data
! from rho(kx,ky) to phi(kx,ky)
do k = 0,1
do j = 0,jmx-1
do i = 0,imx-1
temp3dxy(i,j,k)=temp3dxy(i,j,k)/jmx !*formphi(i,j,k)
enddo
enddo
enddo
! from phi(kx,ky) to phi(x,y)
do k=0,mykm
do i=0,imx-1
do j=0,jmx-1
tmpy(j)=temp3dxy(i,j,k)
enddo
call ccfft('y',1,jmx,1.0,tmpy,coefy,worky,0)
do j=0,jmx-1
temp3dxy(i,j,k)=tmpy(j) ! phi(x,y)
enddo
enddo
enddo
! here phi is zonal-phi
do i=0,nxpp-1
do j=0,jm-1
do k=0,mykm
phi(i,j,k)=temp3dxy(i,j,k)
enddo
enddo
enddo
call enfz(phi(:,:,:))
phizold(0:imx-1)=phi(0:imx-1,jmx/2,0)
phizold(imx) = 0.
! for the solver for ky=0 with ky!=0 part together, the difference is their source term,
! for ky=0 term the source term is \delta n_i (ky=0) +<\phi>, for ky!=0 term, the source term is \delta n_i (ky!=0)
! the matrix is same, i.e. np-\phi (no matter k_y=0 or k_y!=0)
! the ky=0 source term
do i=0,nxpp
do j=0,jm
do k=0,1
u_zonal(i,j,k)=rho(i,j,k)+gn0e(i)*cn0e/gt0e(i)*phi(i,j,k)/real(ntube)
enddo
enddo
enddo
call dcmpy(u_zonal(0:imx-1,0:jmx-1,0:1),v_zonal)
temp3dxy=0.
!$omp target data map(tofrom:jft,sl,v,v_zonal,mx,ipiv,INFO,temp3dxy)
do k=0,1
do j=0,jcnt-1
myj=jft(j)
! the ky!=0 source term
sl(1:imx-1,j,k)=v(1:imx-1,j,k)
! the ky=0 source term
if(myj==jft(0))sl(1:imx-1,j,k)=v_zonal(1:imx-1,j,k)
!$omp dispatch
call ZGETRS('N',imx-1,1,mx(:,:,j,k),imx-1,ipiv(:,:,j,k), &
sl(:,j,k),imx-1,INFO)
temp3dxy(1:imx-1,myj,k)=sl(1:imx-1,j,k)
temp3dxy(0,myj,k)=0.
enddo
enddo
!$omp end target data
! from rho(kx,ky) to phi(kx,ky)
do k=0,1
do j=0,jmx-1
do i=0,imx-1
temp3dxy(i,j,k)=temp3dxy(i,j,k)/jmx !*formphi(i,j,k)
enddo
enddo
enddo
! from phi(kx,ky) to phi(x,y)
do k=0,mykm
do i=0,imx-1
do j=0,jmx-1
tmpy(j)=temp3dxy(i,j,k)
enddo
call ccfft('y',1,jmx,1.0,tmpy,coefy,worky,0)
do j=0,jmx-1
temp3dxy(i,j,k)=tmpy(j) ! phi(x,y)
enddo
enddo
enddo
do i=0,nxpp-1
do j=0,jm-1
do k=0,mykm
phi(i,j,k)=temp3dxy(i,j,k)
enddo
enddo
enddo
! x-y boundary points
call enfxy(phi(:,:,:))
call enfz(phi(:,:,:))
call zon(phi,phiz)
do k = 0,1
do i = 0,imx
dum = 0.
do j = 0,jmx-1
dum = dum+phi(i,j,k)
end do
dum = dum/jmx
do j = 0,jmx
! phi(i,j,k) = phi(i,j,k)-dum+phiz(i)
end do
end do
end do
if(idg==1)write(*,*)'pass enfz', myid
end subroutine gkps_adiabatic_electron
!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
! Code was translated using: /nfs/site/home/tkloeffe/TCE/intel-application-migration-tool-for-openacc-to-openmp/src/intel-application-migration-tool-for-openacc-to-openmp gem_gkps_adi.F90