-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainer.py
230 lines (186 loc) · 8.55 KB
/
Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import time
import cv2
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
import torch
import visdom
from fastai.basic_train import Learner, DataBunch
from fastai.metrics import KappaScore
from fastai.train import lr_find
from torch import nn
from torch.utils.data import Dataset, DataLoader
import torchvision
from tqdm import tqdm
import Models
import Preprocessing
import Utils
from Startup import *
from Timer import Timer
class BlindnessTrainDataset(Dataset):
def __init__(self, data):
self.original = data
self.data = data
self.transform = Preprocessing.transform_ndarray2tensor()
self.col_id = self.data.columns.get_loc(IMAGE_ID) # should be 0
self.col_label = self.data.columns.get_loc(IMAGE_LABEL) # should be 1
def rebalance_classes(self):
g = self.original.groupby(IMAGE_LABEL)
self.data = pd.DataFrame(g.apply(lambda x: x.sample(g.size().min()).reset_index(drop=True)))
def __len__(self):
return len(self.data)
def __getitem__(self, index: int):
img_name = os.path.join(INPUT_ROOT, IMAGE_FOLDER, self.data.iat[index, self.col_id] + '.png')
image = Preprocessing.load_preprocessed_image(img_name)
image = Image.fromarray(image)
image = self.transform(image)
label = torch.tensor(self.data.iat[index, self.col_label])
return image, label
def get_data_properties(dataframe):
counts = dataframe[IMAGE_LABEL].value_counts(normalize=True)
freqs = [0] * 5
for i in range(NUM_CLASSES):
freqs[i] = counts[i]
return {'class_freqs': freqs}
def load_training_datasets():
train_csv = pd.read_csv(os.path.join(INPUT_ROOT, TRAINING_CSV))
# Shuffle and split to train & validation
train_csv = train_csv.sample(frac=1, random_state=139847)
split_boundary = int(len(train_csv) * VALIDATION_PERCENTAGE)
train_df, eval_df = train_csv[split_boundary:], train_csv[:split_boundary]
train_ds, eval_ds = BlindnessTrainDataset(train_df), BlindnessTrainDataset(eval_df)
return train_ds, eval_ds, get_data_properties(train_csv)
def loss_func(data_properties):
weights = 1/torch.tensor(data_properties['class_freqs'])
weights = weights.to(device)
return nn.CrossEntropyLoss(weights)
def find_lr(model, criterion, train_dl, eval_dl, initial_lr=1e-4, gamma=1.05):
optimizer = torch.optim.SGD(model.parameters(), lr=initial_lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma)
vis = visdom.Visdom()
loss_plot = vis.line(Y=[0], X=[0.])
running_loss = 0.
plot_freq = 50
for epoch in range(5):
with tqdm(range(len(train_dl))) as pbar:
for batch, (inputs, labels) in enumerate(train_dl):
inputs = inputs.to(device)
labels = labels.to(device)
output = model(inputs)
loss = criterion(output, labels)
loss.backward()
running_loss += loss.item()
optimizer.step()
pbar.update()
pbar.set_postfix(lr='%.6f' % scheduler.get_lr()[0], test=model._conv_stem.weight.grad[0][0][0][0].item())
optimizer.zero_grad()
if (batch + 1) % plot_freq == 0:
vis.line(Y=[running_loss / plot_freq], X=[scheduler.get_lr()[0]], win=loss_plot,
update=('append' if batch > plot_freq else 'replace'))
scheduler.step()
running_loss = 0.
def fit(model, optimizer, scheduler, criterion, train_dl, eval_dl, loss_history, on_epoch_start=None, epochs=EPOCHS):
vis = visdom.Visdom()
last_epoch = scheduler.last_epoch
loss_plot = vis.line(Y=[[0, 0]] if loss_history is None else loss_history,
X=list(zip(range(last_epoch), range(last_epoch))) if last_epoch else [[0, 0]],
opts={'title': f'Training {MODEL_NAME}'})
if loss_history is None:
loss_history = []
best_metrics = None
for epoch in range(last_epoch, epochs):
print(f'Epoch: {epoch}/{epochs}')
print('-' * 10)
model.train()
if on_epoch_start is not None:
on_epoch_start()
running_loss = 0.0
counter = 0
next_step = STEP_FREQ
with tqdm(range(len(train_dl))) as tk0:
for inputs, labels in train_dl:
inputs = inputs.to(device)
labels = labels.to(device)
output = model(inputs).squeeze(-1)
loss = criterion(output, labels.to(torch.float))
loss.backward()
next_step = next_step - 1
if next_step == 0:
optimizer.step()
optimizer.zero_grad()
next_step = STEP_FREQ
running_loss += loss.item() * inputs.size(0)
counter += inputs.size(0)
tk0.update()
tk0.set_postfix(loss=('{:.4f}'.format(running_loss / counter)))
epoch_loss = running_loss / counter
print('Training Loss: {:.4f}'.format(epoch_loss))
model.eval()
with torch.no_grad():
predictions_list = []
labels_list = []
running_loss = 0.0
counter = 0
with tqdm(range(len(eval_dl))) as tk1:
for inputs, labels in eval_dl:
inputs = inputs.to(device)
labels = labels.to(device)
output = model(inputs).squeeze(-1)
loss = criterion(output, labels.to(torch.float))
running_loss += loss.item() * inputs.size(0)
counter += inputs.size(0)
predictions = Utils.predict_class(output)
predictions_list.append(predictions.cpu())
labels_list.append(labels.cpu())
tk1.update()
all_predictions = torch.cat(predictions_list)
all_labels = torch.cat(labels_list)
predictions = all_predictions.cpu().numpy()
labels = all_labels.cpu().numpy()
kappa_score = Utils.compute_kappa(predictions, labels)
accuracy_score = Utils.compute_accuracy(predictions, labels)
print('Validation Kappa: {:.4f} Accuracy: {:.4f}'.format(kappa_score, accuracy_score))
eval_loss = running_loss / counter
print('Validation Loss: {:.4f}'.format(eval_loss))
cur_metrics = (kappa_score, accuracy_score, -eval_loss)
if best_metrics is None or all([m_cur >= m_best for m_best, m_cur in zip(best_metrics, cur_metrics)]):
print('New best model. Saving...')
torch.save(model.state_dict(), MODEL_PATH + '.best')
best_metrics = cur_metrics
vis.line(Y=[[epoch_loss, eval_loss]], X=[[epoch, epoch]], win=loss_plot,
update=('append' if epoch else 'replace'))
loss_history.append([epoch_loss, eval_loss])
scheduler.step()
print(f'Current LR: {scheduler.get_lr()}')
torch.save(model.state_dict(), MODEL_PATH)
torch.save({
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'history': torch.tensor(loss_history)
}, STATE_PATH)
def main():
train_ds, eval_ds, data_properties = load_training_datasets()
train_dl = DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS)
eval_dl = DataLoader(eval_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS)
if NEW_MODEL:
model = Models.generate_model_efficientnet()
else:
model = Models.load_model_efficientnet(MODEL_PATH)
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE, weight_decay=L2_LOSS)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.9)
loss_history = None
if not NEW_TRAINING:
ckpt = torch.load(STATE_PATH)
optimizer.load_state_dict(ckpt['optimizer'])
scheduler.load_state_dict(ckpt['scheduler'])
optimizer.param_groups[0]['lr'] = scheduler.get_lr()[0]
loss_history = ckpt['history'].numpy().tolist()
with Timer('Finished training_05 in {}') as _:
# loss = Utils.KappaLoss(data_properties['class_freqs'])
loss = nn.MSELoss()
fit(model, optimizer, scheduler, loss,
train_dl, eval_dl, loss_history, train_ds.rebalance_classes)
# find_lr(model, Utils.KappaLoss(), train_dl, eval_dl)
if __name__ == '__main__':
main()