-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStartup.py
52 lines (36 loc) · 1.03 KB
/
Startup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import torch
from PIL import Image, ImageFile
device = torch.device("cuda:0")
ImageFile.LOAD_TRUNCATED_IMAGES = True
#INPUT_ROOT = r'input'
INPUT_ROOT = r'E:\Temp\Datasets\APTOS 2019\input'
IMAGE_FOLDER = r'train_images_t3_512'
#IMAGE_FOLDER = r'test15_t3_512'
#IMAGE_FOLDER = r'train15_t3_512'
#IMAGE_FOLDER = r'traintest15_t3_512'
TRAINING_CSV = 'trainLabels19.csv'
#TRAINING_CSV = 'testLabels15.csv'
#TRAINING_CSV = 'trainLabels15.csv'
#TRAINING_CSV = 'traintest15.csv'
IMAGE_ID = 'id_code'# 'image' # id_code
#IMAGE_ID = 'image'
IMAGE_LABEL = 'diagnosis'# 'level' # diagnosis
#IMAGE_LABEL = 'level'
MODEL_ROOT = r'models'
MODEL_NAME = r'efficientnet_15_e19.pth'
MODEL_PATH = os.path.join(MODEL_ROOT, MODEL_NAME)
STATE_PATH = os.path.join(MODEL_ROOT, 'training_' + MODEL_NAME)
NEW_MODEL = False
NEW_TRAINING = False
VALIDATION_PERCENTAGE = 0.1
# TODO figure out if large images work
IMG_SIZE = 224
#IMG_SIZE = 512
NUM_CLASSES = 5
BATCH_SIZE = 8
STEP_FREQ = 2
EPOCHS = 200
NUM_WORKERS = 8
LEARNING_RATE = 1e-4
L2_LOSS = 4e-6