-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathcl_training.py
224 lines (165 loc) · 8.17 KB
/
cl_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
from tensorboard_logger import configure, log_value
import torch
import torch.autograd as autograd
from torch.autograd import Variable
import torch.utils.data as torchdata
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import tqdm
import utils
import torch.optim as optim
from torch.distributions import Bernoulli
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
import argparse
parser = argparse.ArgumentParser(description='BlockDrop Training')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--beta', type=float, default=1e-1, help='entropy multiplier')
parser.add_argument('--wd', type=float, default=0.0, help='weight decay')
parser.add_argument('--model', default='R110_C10', help='R<depth>_<dataset> see utils.py for a list of configurations')
parser.add_argument('--data_dir', default='data/', help='data directory')
parser.add_argument('--load', default=None, help='checkpoint to load agent from')
parser.add_argument('--cv_dir', default='cv/tmp/', help='checkpoint directory (models and logs are saved here)')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--epoch_step', type=int, default=10000, help='epochs after which lr is decayed')
parser.add_argument('--max_epochs', type=int, default=10000, help='total epochs to run')
parser.add_argument('--lr_decay_ratio', type=float, default=0.1, help='lr *= lr_decay_ratio after epoch_steps')
parser.add_argument('--parallel', action ='store_true', default=False, help='use multiple GPUs for training')
parser.add_argument('--cl_step', type=int, default=1, help='steps for curriculum training')
# parser.add_argument('--joint', action ='store_true', default=True, help='train both the policy network and the resnet')
parser.add_argument('--penalty', type=float, default=-1, help='gamma: reward for incorrect predictions')
parser.add_argument('--alpha', type=float, default=0.8, help='probability bounding factor')
args = parser.parse_args()
if not os.path.exists(args.cv_dir):
os.system('mkdir ' + args.cv_dir)
utils.save_args(__file__, args)
def get_reward(preds, targets, policy):
block_use = policy.sum(1).float()/policy.size(1)
sparse_reward = 1.0-block_use**2
_, pred_idx = preds.max(1)
match = (pred_idx==targets).data
reward = sparse_reward
reward[1-match] = args.penalty
reward = reward.unsqueeze(1)
return reward, match.float()
def train(epoch):
agent.train()
matches, rewards, policies = [], [], []
for batch_idx, (inputs, targets) in tqdm.tqdm(enumerate(trainloader), total=len(trainloader)):
inputs, targets = Variable(inputs), Variable(targets).cuda(async=True)
if not args.parallel:
inputs = inputs.cuda()
probs, value = agent(inputs)
#---------------------------------------------------------------------#
policy_map = probs.data.clone()
policy_map[policy_map<0.5] = 0.0
policy_map[policy_map>=0.5] = 1.0
policy_map = Variable(policy_map)
probs = probs*args.alpha + (1-probs)*(1-args.alpha)
distr = Bernoulli(probs)
policy = distr.sample()
if args.cl_step < num_blocks:
policy[:, :-args.cl_step] = 1
policy_map[:, :-args.cl_step] = 1
policy_mask = Variable(torch.ones(inputs.size(0), policy.size(1))).cuda()
policy_mask[:, :-args.cl_step] = 0
else:
policy_mask = None
v_inputs = Variable(inputs.data, volatile=True)
preds_map = rnet.forward(v_inputs, policy_map)
preds_sample = rnet.forward(v_inputs, policy)
reward_map, _ = get_reward(preds_map, targets, policy_map.data)
reward_sample, match = get_reward(preds_sample, targets, policy.data)
advantage = reward_sample - reward_map
loss = -distr.log_prob(policy)
loss = loss * Variable(advantage).expand_as(policy)
if policy_mask is not None:
loss = policy_mask * loss # mask for curriculum learning
loss = loss.sum()
probs = probs.clamp(1e-15, 1-1e-15)
entropy_loss = -probs*torch.log(probs)
entropy_loss = args.beta*entropy_loss.sum()
loss = (loss - entropy_loss)/inputs.size(0)
#---------------------------------------------------------------------#
optimizer.zero_grad()
loss.backward()
optimizer.step()
matches.append(match.cpu())
rewards.append(reward_sample.cpu())
policies.append(policy.data.cpu())
accuracy, reward, sparsity, variance, policy_set = utils.performance_stats(policies, rewards, matches)
log_str = 'E: %d | A: %.3f | R: %.2E | S: %.3f | V: %.3f | #: %d'%(epoch, accuracy, reward, sparsity, variance, len(policy_set))
print log_str
log_value('train_accuracy', accuracy, epoch)
log_value('train_reward', reward, epoch)
log_value('train_sparsity', sparsity, epoch)
log_value('train_variance', variance, epoch)
log_value('train_unique_policies', len(policy_set), epoch)
def test(epoch):
agent.eval()
matches, rewards, policies = [], [], []
for batch_idx, (inputs, targets) in tqdm.tqdm(enumerate(testloader), total=len(testloader)):
inputs, targets = Variable(inputs, volatile=True), Variable(targets).cuda(async=True)
if not args.parallel:
inputs = inputs.cuda()
probs, _ = agent(inputs)
policy = probs.data.clone()
policy[policy<0.5] = 0.0
policy[policy>=0.5] = 1.0
policy = Variable(policy)
if args.cl_step < num_blocks:
policy[:, :-args.cl_step] = 1
preds = rnet.forward(inputs, policy)
reward, match = get_reward(preds, targets, policy.data)
matches.append(match)
rewards.append(reward)
policies.append(policy.data)
accuracy, reward, sparsity, variance, policy_set = utils.performance_stats(policies, rewards, matches)
log_str = 'TS - A: %.3f | R: %.2E | S: %.3f | V: %.3f | #: %d'%(accuracy, reward, sparsity, variance, len(policy_set))
print log_str
log_value('test_accuracy', accuracy, epoch)
log_value('test_reward', reward, epoch)
log_value('test_sparsity', sparsity, epoch)
log_value('test_variance', variance, epoch)
log_value('test_unique_policies', len(policy_set), epoch)
# save the model
agent_state_dict = agent.module.state_dict() if args.parallel else agent.state_dict()
state = {
'agent': agent_state_dict,
'epoch': epoch,
'reward': reward,
'acc': accuracy
}
torch.save(state, args.cv_dir+'/ckpt_E_%d_A_%.3f_R_%.2E_S_%.2f_#_%d.t7'%(epoch, accuracy, reward, sparsity, len(policy_set)))
#--------------------------------------------------------------------------------------------------------#
trainset, testset = utils.get_dataset(args.model, args.data_dir)
trainloader = torchdata.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=4)
testloader = torchdata.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=4)
rnet, agent = utils.get_model(args.model)
num_blocks = sum(rnet.layer_config)
start_epoch = 0
if args.load is not None:
checkpoint = torch.load(args.load)
agent.load_state_dict(checkpoint['agent'])
start_epoch = checkpoint['epoch'] + 1
print 'loaded agent from', args.load
if args.parallel:
agent = nn.DataParallel(agent)
rnet = nn.DataParallel(rnet)
rnet.eval().cuda()
agent.cuda()
optimizer = optim.Adam(agent.parameters(), lr=args.lr, weight_decay=args.wd)
configure(args.cv_dir+'/log', flush_secs=5)
lr_scheduler = utils.LrScheduler(optimizer, args.lr, args.lr_decay_ratio, args.epoch_step)
for epoch in range(start_epoch, start_epoch+args.max_epochs+1):
lr_scheduler.adjust_learning_rate(epoch)
if args.cl_step < num_blocks:
args.cl_step = 1 + 1 * (epoch // 1)
else:
args.cl_step = num_blocks
print 'training the last %d blocks ...' % args.cl_step
train(epoch)
if epoch % 10 == 0:
test(epoch)