forked from lllyasviel/ControlNet
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
133 lines (111 loc) · 5.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
test if KL autoencoder works with steganography
@author: Tu Bui @University of Surrey
"""
import os, sys, torch
import numpy as np
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm
import argparse
from ldm.util import instantiate_from_config
from omegaconf import OmegaConf
from tools.helpers import welcome_message
def trainer_settings(config, output_dir):
out = {}
ckptdir = os.path.join(output_dir, 'checkpoints')
cfgdir = os.path.join(output_dir, 'configs')
if os.path.exists(os.path.join(ckptdir, 'last.ckpt')):
resumedir = output_dir
out['resume_from_checkpoint'] = os.path.join(ckptdir, 'last.ckpt')
else:
resumedir = ''
pl_config = config.get("lightning", OmegaConf.create())
# callbacks
callbacks = {
'generic': dict(target='cldm.logger.SetupCallback',
params={'resume': resumedir, 'now': '', 'logdir': output_dir, 'ckptdir': ckptdir, 'cfgdir': cfgdir, 'config': config, 'lightning_config': pl_config}),
'cuda': dict(target='cldm.logger.CUDACallback', params={}),
'ckpt': dict(target='pytorch_lightning.callbacks.ModelCheckpoint',
params={'dirpath': ckptdir, 'filename': '{epoch:06}', 'verbose': True, 'save_top_k': -1, 'save_last': True}),
}
if 'checkpoint' in pl_config.callbacks:
callbacks['ckpt'] = OmegaConf.merge(callbacks['ckpt'], pl_config.callbacks.checkpoint)
if 'progress_bar' in pl_config.callbacks:
callbacks['probar'] = pl_config.callbacks.progress_bar
if 'image_logger' in pl_config.callbacks:
callbacks['img_log'] = pl_config.callbacks.image_logger
callbacks = [instantiate_from_config(c) for k, c in callbacks.items()]
out['callbacks'] = callbacks
# logger
logger = dict(target='pytorch_lightning.loggers.TestTubeLogger', params={'name': 'testtube', 'save_dir': output_dir})
logger = instantiate_from_config(logger)
out['logger'] = logger
return out
def get_learningrate(pl_config, args):
base_lr = pl_config.trainer.base_learning_rate
lr = base_lr * args.gpus * args.batch_size
if 'accumulate_grad_batches' in pl_config.trainer:
lr *= pl_config.trainer.accumulate_grad_batches
grad_batches = pl_config.trainer.accumulate_grad_batches
else:
grad_batches = 1
print(f'Learning rate set to: {lr:.2e} = {base_lr:.2e} (base lr) x {args.batch_size} (batch size) x {grad_batches} (accumulate_grad_batches) x {args.gpus} (gpus)')
return lr
def get_parser():
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='models/AE.yaml')
parser.add_argument('-o', '--output', type=str, default='/mnt/fast/nobackup/scratch4weeks/tb0035/projects/diffsteg/controlnet/AE')
parser.add_argument('--gpus', type=int, default=1)
parser.add_argument('--secret_len', type=int, default=0, help='Length of secret message, 0 means using the default value in config file')
parser.add_argument('--max_image_weight_ratio', type=float, default=2., help='max weight of image loss after ramping')
parser.add_argument('--batch_size', type=int, default=8, help='Batch size, 8 for 1 A100 80GB GPU')
return parser.parse_args()
def app(args):
output = args.output
config = OmegaConf.load(args.config)
secret_len = args.secret_len if args.secret_len > 0 else config.model.params.control_config.params.secret_len
config.model.params.control_config.params.secret_len = secret_len
config.model.params.loss_config.params.max_image_weight_ratio = args.max_image_weight_ratio
# data
data_config = config.get("data", OmegaConf.create()) # config.pop()
data_config.params.batch_size = args.batch_size
data_config.params.train.params.secret_len = secret_len
data_config.params.validation.params.secret_len = secret_len
# resolution = 256
data = instantiate_from_config(data_config)
# tform = transforms.Resize((resolution,resolution))
data.prepare_data()
data.setup()
# for k in data.datasets:
# data.datasets[k].set_transform(tform)
print("#### Data #####")
for k in data.datasets:
print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
# trainer
trainer_kwargs = dict(gpus=args.gpus, precision=32)
trainer_kwargs.update(trainer_settings(config, output))
trainer = pl.Trainer(**trainer_kwargs)
trainer.logdir = output
# model
config.model.params.decoder_config.params.secret_len = secret_len
model = instantiate_from_config(config.model).cpu()
model.learning_rate = get_learningrate(config.lightning, args)
# Train!
trainer.fit(model, data)
if __name__ == '__main__':
print(welcome_message())
args = get_parser()
app(args)