
Limit order
placement
optimization
with Deep

Reinforcement
Learning

Learning from patterns in raw historical
cryptocurrency market data

by

Marc B. Juchli
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 19, 2018 at 09:00 AM.

Student number: 4634845
Project duration: November 1, 2017 – July 19, 2018
Thesis committee: Prof. dr. M. Loog, TU Delft, supervisor

Dr. J. Pouwelse, TU Delft, co-supervisor
Prof. dr. ir. M.J.T. Reinders, TU Delft

This thesis is confidential and cannot be made public until July 31, 2018.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Financial institutions buy or sell assets based on various reasons and such high-level trading strategies often-
times define the purpose of their business. Regardless of their trading strategy, the invariable outcome is the
decision to buy or sell assets.

This work aims to make a step towards answering the non-trivial question on how to optimize a buy or
sell of an asset on a stock exchange with the use of reinforcement learning techniques. Particularly:

How can one design a reinforcement learning environment and construct features, which are
derived from a limit order book, in order to optimize on the non-trivial problem of limit order
placement, and what are the limitations thereof?

We study event data from a crypto-currency exchange of our choice and build a framework that allows to sim-
ulate and understand the outcome of order placement in this market. We then try to overcome the exploita-
tion of other participants in the market by building an intelligent trader that follows a placement strategy
which aims to execute orders to a favourable price. Multiple reinforcement learning approaches are devel-
oped that consider various types of features, derived from the financial data set. To investigate the perfor-
mance and analyze the behaviour of these approaches we further develop reinforcement learning environ-
ments on top of the aforementioned framework which simulate the processes of order placement.

Our findings show...

iii

Preface

Preface. . .

Marc B. Juchli
Delft, January 2013

v

Contents

1 Introduction 1
1.1 Context and Problem Statement . 1
1.2 Research objectives . 3
1.3 Document structure . 4

2 Preliminaries 5
2.1 Order Book . 5

2.1.1 Orders . 5
2.1.2 Characteristics . 6

2.2 Match Engine . 7
2.2.1 Trade. 7
2.2.2 Interface . 7
2.2.3 Rules . 8
2.2.4 Limitations. 8

2.3 Order execution and placement. 9
2.4 Reinforcement Learning . 9

2.4.1 Advantages of end-to-end learning . 9
2.4.2 Markov Decision Process (MDP) . 10
2.4.3 Interaction . 10
2.4.4 Environment. 12
2.4.5 Agent . 12
2.4.6 Deep Reinforcement Learning . 12

3 RelatedWork 15
3.1 Execution/Placement behaviour . 15
3.2 Statistical approach . 16
3.3 Supervised Learning approach . 17
3.4 Reinforcement Learning approach . 18

4 Market data curation and feature construction 19
4.1 Collection of market events . 19
4.2 Reconstruction of an order book with market events . 20
4.3 Formulating hypotheses of the market behaviour . 21

4.3.1 Importance of order prices. 21
4.3.2 Importance of order volume . 22
4.3.3 Importance of volume of orders and trades over time 22
4.3.4 Impact of traded price and volume. 25

4.4 Feature construction . 26
4.4.1 Feature: price and size of historical orders . 26
4.4.2 Feature: price and size of historical trades . 27

4.5 Conclusion . 28

5 Experimental reinforcement learning setup 29
5.1 Order Placement Environment . 29

5.1.1 Overview of components . 30
5.1.2 Configuration parameters . 30
5.1.3 State . 31
5.1.4 Action . 31
5.1.5 Reward. 32

5.2 Q-Learning agent . 32
5.3 Deep Q-Network agent . 33

vii

viii Contents

6 Evaluation procedure and discussion of results 35
6.1 Explanation of the evaluation procedure . 35
6.2 Data sets and their usage in the reinforcement learning setup 36
6.3 An empirical investigation of the reinforcement learning environment 37

6.3.1 Order placement behavior on data set I . 37
6.3.2 Order placement behavior on data set II . 41
6.3.3 Conclusion of empirical analysis . 41

6.4 Q-Learning without market variables . 42
6.4.1 Results of training and testing on data sets I and II . 42
6.4.2 Conclusion of Q-Learning approach . 44

6.5 Deep Q-Network with market features . 44
6.5.1 Application of historical order feature . 45
6.5.2 Application of historical trade feature . 47

6.6 Determining the limitations of the DQN agent . 50
6.6.1 Limitation arising from market situations or inappropriate actions from the agent 50
6.6.2 Capabilities evaluated using artificial limit order books 52

6.7 Conclusion of the evaluation . 53

7 General conclusions and discussion 55
7.1 Findings with regard to the research questions . 55

7.1.1 RQ 1.1: Which historical market data patterns drive market participants to buy or sell
assets, and how can these patterns be incorporated into features used by a deep rein-
forcement learning agent? . 55

7.1.2 RQ 1.2: How should one design a reinforcement learning environment and agents, in
the context of order placement? . 56

7.1.3 RQ 1.3: How can one evaluate a reinforcement learning agent in the context of order
placement?. 57

7.1.4 RQ 1.4: In which way do the previously constructed features enable a reinforcement
learning agent to improve the way it places orders? . 58

7.2 Recommendations and future work. 59
7.3 Summary of contributions . 60
7.4 Application in real world practices . 60

Bibliography 61

1
Introduction

Financial institutions make decisions to buy or sell assets for many reasons, including: customer requests,
fundamental analysis[4], technical analysis[13], top-down investing[12], and bottom-up investing[1]. High-
level trading strategies oftentimes define how an institution positions itself in financial markets and, if appli-
cable, towards its customers. Regardless of the high-level trading strategy that is being applied, the invariable
outcome is a decision to buy or sell assets. This work aims to take a step towards answering the important
question of how one can optimize a purchase or sale of an asset on a stock exchange with the use of reinforce-
ment learning techniques. The subsequent sections will elaborate this problem briefly and state the research
objectives of this work. We will list the contributions made to research communities throughout this work,
followed by a brief overview of the structure of this report.

1.1. Context and Problem Statement

We are concerned about the way assets, specifically securities (exchange traded assets), are traded on stock
exchanges. There is little consensus as to when corporate stock was first traded; some argue that the ex-
change, in the form we know it today, dates back as far as 1531, when East Indian Company stock was traded
in Antwerp[11]. Modern financial markets such as the London Stock exchange (LSE), the New York Stock
Exchange (NYSE), but also the numerous crypto-currency exchanges which have appeared suddenly in the
last few years, all rely on the very same principles as back then. They allow participants (called "traders")
to buy or sell a given amount of a security at a particular price. In the late 1990s, the regulatory authorities
started to let traders access the markets using electronic communications networks (ECNs) and so a new era
dawned [34]. Since then, high frequency trading (HFT) and sophisticated algorithmic trading vehicles have
made up a substantial and ever-increasing part of electronic market participants. Their servers are oftentimes
located within exchanges and specialized computer networks have been constructed to provide millisecond-
level advantage in the arbitrage of trades between exchanges. Ever since, traders without such equipment
and techniques have felt that they are at a disadvantage in such an environment. [34] While anything except
trading through electronic channels would be unthinkable today, a certain gap still exists between trading
companies that have fibre access to the exchanges or supporting algorithms and investors who do not. As a
result, investors are forced to take an initial loss into account when buying or selling securities, which they
might not even be aware of. In order to understand why these losses are incurred, we have to have a basic
understanding of a so-called order book and how securities are bought at an exchange.

1

2 1. Introduction

Figure 1.1: Order book snapshot: https://www.bitfinex.com/t/BTC:USD

Figure 1.1 shows a snapshot taken at some time t of the trading pair Bitcoin (BTC) versus US dollar (USD)
taken on the Bitfinex1 cryptocurrency exchange. The order book shows two columns, the parties who are
willing to buy are on the left and the parties who are willing to sell are on the right. The two columns indicate
the number of buyers and sellers (count) who are willing respectively to buy and sell a certain amount for
a given price. The column total is the cumulative sum of the amount, or volume, on each side. The differ-
ence between the figures in each column is the spread. In this particular case, the current best bid price–at
which someone is willing to buy–is $14,910.00 and the best ask-price at which someone is willing to sell, is
$14,930.00. Therefore, the spread is currently $20.00.

Suppose we want to buy 1.0 BTC. Two possible ways to do so are:

1. Buy 1.0 shares immediately for $14,930.00 from a seller. To do so, we submit a market order.

2. State a price at which we are willing to buy 1.0 shares at price p, for example at $14,910.00, and wait
until someone is willing to sell at this price. To do so, we submit a limit order.

Both types of orders come with their advantages and disadvantages. A market order ensures that we will
be able to acquire the stated amount of shares immediately for $14’930.00, provided that no one else has
a prior claim to them and that the seller does not cancel his/her listing. In this case, we are automatically
willing to pay the next available best price. However, we do pay a premium compared to the limit order since
ask prices are listed higher than bid prices and the more shares one wants to buy, the more sellers we have
to contact and accept their offers at an increased price. With a limit order, the exchange guarantees that we
will pay $14,910.00 or less. That is, when a seller is willing to sell for the stated price or less, the exchange will
match the offers of both parties. However, this comes with the risk that we will never be able to buy if nobody
is going to sell at the demanded price, and this will force us to buy the shares demanded at a later point in
time. As the price of a share evolves over time, we might get lucky and be able to buy at a cheaper price than
at the time of the initial attempt. The other scenario is that the price did not develop in our favour such that
we have to buy at a higher price later on; thus, we pay a so-called opportunity cost. A third order type, the
cancel order, allows a trader to cancel his/her previously posted limit or market order at any given point in
time.

With this brief understanding of how traders can interact with the exchange, we can define the problem of
order placement as follows. Order placement determines the price at which a trader places its order. The aim
of optimizing order placement are to minimize the opportunity cost and, ideally, achieve a more favorable
price payable (or receive) than what is currently being offered at the market price. Literature therefore speci-
fies a time scale of from ten to one hundred seconds within which a trader has to complete his task of either
buying or selling the shares [21]. A time scale of less than ten seconds applies in high frequency trading and
one of above 100 seconds is known as order execution optimization. Thus, could we define order placement
optimization as the price p at which one should attempt to buy or sell i shares within a time horizon H of 100

1https://www.bitfinex.com

1.2. Research objectives 3

seconds? As we shall see, optimizing placement is not as trivial as one might think, even though the concepts
of the order book and the three order types a trader can choose from are admittedly simple. There are various
properties in a limit order book, as well as the behaviour of the market participants, that changes over time.
All of which can drastically interfere with the intention of buying and selling. Furthermore, since the founda-
tion of electronic trading networks and algorithmic trading, the amount and sophistication of other market
participants has been ever-increasing, with everyone aiming for an advantage over others.

The fact that reinforcement learning functions by maximizing rewards makes this technique unarguably
suitable in this context. That is, how to place orders according to the given market condition and therefore
protect an investor form paying the aforementioned premium to other participants in the market. Ideally,
such a learner will be able to foresee short-term trend changes such that the investor ultimately benefits from
a better price at which to buy or sell the asset.

1.2. Research objectives
This work extends the findings of Kearns et. al. who have studied the behavior of order placement and order
execution[31], and developed a reinforcement learning strategy[32] for the purposes of optimization. Their
work explains how features derived from order book data were pre-processed and applied to a reinforcement
learning algorithm which is similar to Q-Learning. In this thesis, rather than constructing features by hand,
we will describe a particular instance of how deep reinforcement learning techniques were employed in order
to benefit from patterns in raw market data. In addition, the cryptocurrency domain was chosen, instead of
the traditional stock market. Furthermore, while the previously mentioned work of Kearns et al. had success
in using pre-processed market data as features, we believe that raw market data in combination with deep
reinforcement learning can be equally successful. Hence, our ambition is to determine if deep reinforcement
learning is perhaps an even more suitable choice in order to deal with unexpected market situations. There-
fore we have formulated the following research question to be answered in this thesis:

RQ 1: How can the application of deep reinforcement learning contribute to the optimization of limit or-
der placement?

We chose to divide the research question into sub-questions as this follows the logical structure of this document
and provides an understanding of the steps taken in order to give an answer to the main research question.

RQ 1.1: Which historical market data patterns drive market participants to buy or sell assets, and
how can these patterns be incorporated into features used by a deep reinforcement learning
agent?

Traders participating in financial markets, including cryptocurrency markets, can submit and
cancel orders to trade shares. These events are recorded by the cryptocurrency exchange and
are publicly accessible as raw market data. We intend to find patterns in the data which reflect
the behavior of these market participants. The patterns found will form the basis of hypotheses
suggesting that some behavioral patterns are more likely to lead traders either to buy or sell an
asset in the short term. Whenever a hypothesis is true, one can determine a favorable price at
which to buy or sell the asset, and hence, mitigate the impact of the order placement problem.
Thus, we have to determine how to shape historical market data and construct features with
the patterns found and incorporated that enable deep reinforcement learning agents to learn an
order placement strategy.

RQ 1.2: How should one design a reinforcement learning environment and agents, in the context
of order placement?

In order to simulate and understand the outcome of order placement and, more importantly,
build a reinforcement learning environment that allows interaction with agents, this work will
suggest a way of translating the given problem into a reinforcement learning context. Conse-
quently, we are required to build a framework which should provide collection and market data
processing capabilities in order to reproduce a historical order book that serves as a data source.
Further, we require that the framework provide the functionality of a match engine which em-
ulates the functionality of a stock exchange that can match orders and determine the resulting

4 1. Introduction

price paid (or received) according to the historical order book. Ultimately, a reinforcement learn-
ing environment should be built to simulate and evaluate order placement. The environment
should allow direct user interaction in order to place orders on demand and allow interaction
with agents which act as intelligent traders. Therefore, we have made use of the OpenAI Gym2 li-
brary and we contribute our work to the community to enable further investigations to be carried
out.

Further, we shall then build two reinforcement learners which will both act as intelligent traders
and thereby place limit orders that provide an incentive to buy or sell an asset at a favorable price.
Both agents should be driven by an end-to-end learning process by which the agent improves
based on the outcome of the orders placed and ultimately learns a strategy for buying and selling
shares at favorable prices. The former agent is an adaptation of the well- known Q-Learning
algorithm and optimizes only in accordance with the amount of assets to buy or sell and the given
time horizon. This agent is a deep reinforcement learning agent that makes use of a convolutional
neural network in order to detect patterns in market data.

RQ 1.3: How can one evaluate a reinforcement learning agent in the context of order placement?

The ability to quantify the capabilities of a limit order placement strategy learned by a reinforce-
ment learning agent is of significant importance when answering the main research question in
this thesis. Since there is no literature available which states results for the exact same data set,
nor for any data set within the crypto- currency domain, a procedure has to be introduced by
which different learning approaches and features considered can be evaluated. Therefore a mea-
sure is to be taken that is well-suited to the determination and comparison of the capabilities
of a reinforcement learning agent in the order placement context. Furthermore, the evaluation
procedure should identify the extent to which a limit order placement can be optimized in a
given historical data set. As a result, the evaluation shall serve as a reliable measure of how well a
learned order placement strategy performs.

RQ 1.4: In which way do the previously constructed features enable a reinforcement learning
agent to improve the way it places orders?

The significance of deep reinforcement learning and the use of features derived from market
data has to be determined in the application of order placement. The findings shall be compared
to the performance achieved by a learner which has less information available, as well as the
previously identified limitations of the market data available. Finally, the limitations of a learned
strategy are to be identified.

1.3. Document structure
In Chapter 2, we first provide background information to the reader on the components of a stock exchange.
Further, we make the reader familiar with (Deep) Reinforcement Learning. In Chapter 3, we elaborate on the
behavior of order placement followed by approaches of both statistical and machine learning nature. Chapter
4 explains the process of data collection and preparation which was carried out prior to its use in the subse-
quent chapters. Chapter 5 explains the experimental setup of the reinforcement learning environment, the
agents and the way processed features are used. In Chapter 6, we analyze the data, carry out order placement,
and include reasons for our findings. Finally, in Chapter ??, we formulate a conclusion of our findings and
state a future research direction.

2https://github.com/openai/gym

2
Preliminaries

In this chapter, we will provide background information in order to understand the previous work done in
this field that was introduced in Chapter 3. We will also rely on the knowledge provided in this chapter when
describing data collection and processing in Chapter 4 as well as when constructing the experimental setup
in Chapter 5. We rely on the reader to be patient while reading this chapter as, although the interplay between
the components we will introduce may not be immediately obvious, this will become clear in Chapter 5 when
the components are used to build a reinforcement learning environment and agents. Firstly, the concept of
the order book (which was introduced above) is described in greater detail, as this serves as the data structure
for the historical data collected. Subsequently, a simplified match engine is described. We will use this to
emulate a local broker that can match orders using the historical order book. Furthermore, reinforcement
learning is introduced in order to identify the differences between it and other machine learning techniques.
This is followed by a detailed explanation of all its components. Finally, deep reinforcement learning is intro-
duced as an extension to the previously described reinforcement learning principles.

2.1. Order Book
Traders post orders in a limit order book in order to state their intentions to buy (or sell) a given asset, as
described in Section 1.1). Orders listed in the limit order book provide liquidity to the market as other traders
can accept these offers by posting an order with the equivalent price to sell (or buy) the asset. This section
introduces the most popular order types under which traders can post their offers in a limit order book. We
will identify the types that are better with respect to ensuring market liquidity and which therefore benefit
from lower fees and those that enable traders to state their wish to immediately buy or sell assets and take
liquidity from the market. Furthermore, the characteristics of a historical order book that is filled with orders
from traders is explained as knowing them will assist when the match engine is explained in the subsequent
section.

2.1.1. Orders
As indicated by the name, an order is an order to buy or sell a stock. There are various types of orders which
determine how the order that is placed should be executed by the exchange. In this section, we provide
information about the two most common types, namely the limit order and the market order, We define the
indication to buy or sell as the Order Side,

Or der Si de = {Buy,Sel l } (2.1)

Before we define the order types in greater detail, we will conclude what is said above and define the Order
as,

Or der = {Or derLi mi t ,Or derM ar ket } (2.2)

Limit order
A limit order refers to an attempt to buy or sell a stock at a specific price or better,

Or derLi mi t = (si de, quanti t y, pr i ceLi mi t) (2.3)

5

6 2. Preliminaries

, where si de ∈Or der Si de, quanti t y ∈R+ and pr i ceLi mi t ∈R+.

A buy limit order can only be executed at the limit price or lower, and a sell limit order can only be executed at
the limit price or higher [9]. More precisely, with respect to buy orders, if the best price on the opposing side
of the book equals or falls to lower than the limit price (or for sell orders, equals or exceeds it), the broker will
match those two orders, resulting in a trade. The disadvantage of this order type is that there is no guaran-
tee that the order will be executed. If no order appears on the opposing side, the order will remain (possibly
forever) unexecuted.

Market order
A market order refers to an attempt to buy or sell a stock at the current market price, expressing the desire to
buy (or sell) at the best available price. Therefore,

Or derM ar ket = (si de, quanti t y) (2.4)

, where si de ∈Or der Si de and quanti t y ∈R+.

The advantage of a market order is that as long as there are willing buyers and sellers, the execution of the
order is almost always guaranteed. [10] The disadvantage is the less competitive the price one pays when
the order is executed. Market orders are executed by starting from the best price of the opposing side, then
traversing down the book as liquidity is consumed. Hence, market orders tend to be expensive, especially
large ones.

2.1.2. Characteristics
Figure 1.1 shows a real world example of a limit order book; in this case the snapshot was taken from a known
crypto-currency exchange. To be precise, this is the state of an order book at some time t and shows the
current limit orders from participants at this moment in time (ignoring the possibility that the state might
have changed during the data sending process). Hence, we refer to it as an order book state (OS). We refer to
the order book (OB) that is used in this project as a recorded historical sequence of order book states.

OB =OS1, ...OSn (2.5)

As we can see, every such state holds entries whose price or amount change, on both the buyer’s and the
seller’s sides. We refer to each row that can be formed by participants who submitted limit orders of some
amount at the same price level as order book entry (OEsl) of the side s at level l .

OEsl = (count , pr i ce, amount) (2.6)

, whereas count ∈N, pr i ce ∈R+ and amount ∈R+. As a result, the order book state is a sequence containing
order book entries for each side (buy and sell) and the time stamp t s of the state,

OS = (t s,OEb1 , ...,OEbn ,OEs1 , ...,OEsn) (2.7)

Figure 2.1: Figure taken from [6]. Simplified limit order book, which provides an understanding of some characteristics.

2.2. Match Engine 7

Figure 2.1 illustrates a simplified order book, from which we can derive definitions. The limit level specifies
the position of an order book entry within the side of an order book state and the market depth corresponds
to how deep in the order book buyers and sellers have listed offerings. A deep order book therefore indicates a
large range of limit levels. The term volume can relate to the total volume traded over a given time horizon, or
can indicate the sum of what is currently offered to a certain price. Considering the sides of the order book,
a bid refers to a price on the buyer side and the best bid represents the highest price at which someone is
willing to buy a given asset. The best bid appears as the first order book entry on the buyer side, closest to the
spread. By contrast, an ask refers to a price on the seller side and the best ask represents the lowest price at
which someone is willing to sell a given asset. The best ask appears as the first order book entry on the seller
side, closest to the spread. Consequently, the market price is the average of the best bid and best ask prices
and the spread indicates the difference between the best bid and best ask.

The most recent price upon which a buyer and seller agreed to trade a security is known as quote. In an
order driven market, liquidity is a synonym for the ease of trading. Liquidity stands for the amount of shares
provided by parties of the opposing side and is what effectively enables one to buy and sell securities. Liq-
uidity is achieved by submitting limit orders which are not immediately executed. A market maker provides
liquidity to the market by posting limit orders which are not immediately executed. In return, the market
maker pays a lower fee than a market taker, the maker fee. By contrast, the market taker takes liquidity out of
the market by posting either market orders or limit orders which are immediately executed by the exchange.
As loss of liquidity is not beneficial to the exchange, the market taker pays a fee known as taker fee on a slightly
higher scale.

2.2. Match Engine
The matching engine is the component which is responsible for the process of matching buy and sell orders
at a traditional stock exchange such as NASDAQ or NYSE, or cryptocurrency exchanges such as Bitfinex, or
Bittrex. In order to determine the outcome of an order, the trader typically submits the order to an exchange
and either trades on the live market or gets access to a test environment, which if one exists, would be costly.
Consequently, the order is processed on the current market and there is no option to process it on a historical
data set in order to determine its hypothetical outcome, had the order been posted at some time t in the past.
For the aforementioned reasons, a local match engine is being developed that evaluates the outcome of order
placements using a historical order book data set, free of charge. This local match engine is a key element of
the order placement optimization process as the outcome of matched orders will directly affect the reward
received by an agent which, in turn, will use the reward to try to improve its own capabilities.

This section will first define a trade as the result of two matching orders. Subsequently, a time horizon -
as an addition to the previously introduced order types (Section 2.1.1) - is presented so that we can describe
the interface of the match engine that will be used throughout the learning process. Finally the rules relating
to the implementation of the local match engine are outlined; these explain the mechanics of the matching
process.

2.2.1. Trade
In order to understand the purpose of the matching process, which is described in more detail below, we first
have to define what a trade is. A trade results when the orders (Eq. 2.2) from two parties on opposing order
sides (Eq. 2.1) agree on a quantity of shares and its price. That is,

Tr ade = (t s, si de, t y pe, quanti t y, pr i ce) (2.8)

, where t s is the time-stamp when the participants agreed on the exchange of the products, si de ∈Or der Si de,
t y pe ∈Or der T y pe, quanti t y ∈R+ and pr i ce ∈R+.

2.2.2. Interface
This match engine enables the simulation and evaluation of order placement without the need to consult an
electronic trading network. Alongside the order that is sent to the match engine (directly or via an electronic
trading network), the user can specify a time horizon H indicating how long the order should stay active. The
two most commonly used timing mechanisms are:

Good Till Time (GTT): The order stays in the order book until a specified amount of time elapses. (Some

8 2. Preliminaries

implementations define this as Good Till Date, which involves specifying a validity expiry date and time
for the order.)

Good-Til-Canceled (GTC): The order stays in the order book until the user submits a cancellation.

The match engine built in this project made available an interface that represents a function match which
takes any type of Order (Section 2.1.1) and time horizon H and returns a sequence of trade (Eq. 2.8). That is,

match : Or der ×H → Tr ades (2.9)

, whereas |Tr ades| ∈N. The order is filled (which means "fulfilled") if the sum of the traded quantity is equal
to the amount stated in the submitted order, partially-filled if the traded quantity is > 0 but not filled and not
filled otherwise.

The matching process behaves differently depending on the submitted order type, and this is explained in the
following paragraph.

2.2.3. Rules
Compared to the rules applicable to match engines used in electronic trading networks, the rules presented
below are rather primitive. Yet they are sufficiently accurate within the subset of the limited capabilities
provided to it, as compared to the capabilities of a real world exchange. The rules used by the order matching
engine are mainly derived from [5]:

1. Limit orders (defined in Section 2.1.1) may be partially filled or not filled at all if there are no parties on
the opposing side.

2. Market orders (defined in Section 2.1.1) will execute immediately if an opposite order has been previ-
ously submitted to the market.

3. Market orders may be partially filled, at different prices, depending on the liquidity on the opposing
side of the book.

4. Attempts are made to match limit orders from a given point in time onward, or in the case of a Good
Till Time (GTT), for as long as is specified.

2.2.4. Limitations
Since the match engine used in this project is a rudimentary implementation for the purpose of simulating
and analyzing order execution and placement, it features only a subset of what a conventional match engine,
used by electronic trading networks, is capable of. That said, the following limitations have to be taken into
consideration:

Participants: most importantly, the match engine is used locally where no other participants are interacting
during its use. In order to be able to approximate the most likely outcome, historical data serves to
simulate the past actions of market participants. While this is valuable real world data, unfortunately it
does not cover the possibilities of hidden participants 1) entering or 2) leaving the market upon placing
an order during the simulation. Participants who would enter the market would likely be favorable to us
as they would act as potential buyers and sellers and therefore provide liquidity. Participants who leave
the market would introduce a slight disadvantage as there would be less liquidity. Since both parties
are absent, we consider our implementation as a good approximation without any major advantage or
disadvantage.

Ordering this match engine is restricted to simulating the matching of only one order from one participant
at a time. Hence, any type of ordered processing of incoming orders (typically solved with a queuing
system) is not supported. However, this functionality is also not required for our purposes.

Timing inaccuracy: occurs when submitting an order with a time horizon (see Section 2.2.2). The fact that
we are relying on historical data and the time stamps of the orders submitted from participants in
the past is a limitation when submitting an order throughout a certain period of time (GTT). It can
occur that, at the end of the period, the order would have some time t left (e.g. a few seconds) but the
following order book state is nearer to the future than t would allow. We will therefore have to abort the
matching process early.

2.3. Order execution and placement 9

2.3. Order execution and placement
From the above descriptions of the order book and the match engine, it is obvious that a trader has a variety
of ways to approach a market and fulfill his duties to buy (or sell) shares. Conceptually, the process a trader
follows involves these two steps: order execution and order placement; the latter is the main subject of this
thesis.

Many useful definitions which highlight the difficulties related to the domain of order execution were
stated by Lim et al. [26] and Guo et al. [21]. Most importantly, order execution concerns optimally slicing
big orders into smaller ones in order to minimize the price impact, that is, moving the price up by executing
large buy orders (respectively down for sell orders) at once. By splitting up a big order into smaller pieces
and spreading its execution over an extended time horizon (typically on a daily or weekly basis), the impact
cost can be lessened. By contrast, order placement concerns optimally placing orders within ten to hundred
seconds. Placing refers to the setting of the limit level for a limit order as described in Section 2.1.1. Its aim is
to minimize the opportunity cost which arises when the price moves against us.

Literature[21, 32] suggests using the volume weighted average price (VWAP) as measures of the return of
order placement and order execution. That is,

pv w ap =
∑

vp ∗p

V
(2.10)

, whereas p is the price paid for vp shares and V represents the total volume of shares.

2.4. Reinforcement Learning
This section first aims to describe what Reinforcement Learning is and highlight its differences compared to
other machine learning paradigms. We will briefly discuss why this particular technique might be an appro-
priate choice for the task of optimizing order placement. Then, a basic understanding of Markov Decision
Processes will be provided, after which we will explain the interaction between the Reinforcement Learning
components. This will be followed by a description of their properties.

2.4.1. Advantages of end-to-end learning

Figure 2.2: Categorization of machine learning techniques

Reinforcement learning is a specific learning approach in the machine learning (see Figure 2.2) field and
aims to solve problems which involve sequential decision making. Therefore, when a decision made in a
system affects future decisions and eventually an outcome, the result is that we learn more about the optimal
sequence of decisions with reinforcement learning.

Figure 2.3: Reinforcement learning end-to-end learning pipeline

With respect to the optimization of order placement in limit order books, statistical approaches have
long been the preferred choice. While statistics emphasizes inference from a process, machine learning em-
phasizes the prediction of the future with respect to some variable. Machine learning paradigms, such as
supervised learning, rely on an algorithm that learns by already-labeled data presenting a specific situation
provided with the right action to do. From there, the algorithm tries to generalize the model.

10 2. Preliminaries

In reinforcement learning, by contrast, there is no supervision and instead an agent learns by maximizing
rewards. The feedback retrieved while executing a task that has a sequence of actions might be delayed over
several time steps and hence the agent might spend some time exploring until it finally reaches the goal and
can update its strategy accordingly. This process can be regarded as end-to-end learning and is illustrated
in Figure 2.3. In abstract terms, the agent makes an observation of its environment and estimates a state for
which it models and predicts the action to be taken. Once the action is executed, the agent receives a reward
and will take this into consideration during future prediction phases. The beauty of this is that an arbitrar-
ily complex process can be regarded as a black box as long as it can take an input from the learner to do its
job and report how well the task was executed. In our context, this means that we would model the order
placement process pipeline whereas the learner improves upon the outcome of the submitted orders. In ad-
dition, for reinforcement learning problems, the data is not independent nor identically distributed (I.I.D).
The agent might in fact, while exploring, miss out on some important parts to learn the optimal behavior.
Hence, time is crucial as the agent must explore as many parts of the environment as possible to be able to
take the appropriate actions. [8]

Example: Since we are working with financial systems, let us assume we want to buy and sell stocks on a
stock exchange. In reinforcement learning terms, the trader is represented as an agent and the exchange is
the environment. The details of the environment do not have to be known as it is rather regarded as a black
box. The agent’s purpose is to observe features of the environment, for example, the current price of a stock.
The agent then makes estimates about the situation of the observed state and decides which action to take
next – buy or sell. The action is then sent to the environment which determines whether this was a good or
bad choice, for example, whether we made a profit or a loss.

2.4.2. Markov Decision Process (MDP)
A process such as the one outlined above can be formalized as a Markov Decision Process. An MDP is a
5-tuple (S, A,P,R,γ) where:

1. S is the finite set of possible states st ∈ S at some time step.

2. A(st) is the set of actions available in the state at time step t , that is at ∈ A(st), whereas A =⋃
st∈S A(st)

3. p(st+1|st , at) is the state transition model that describes how the environment state changes, depend-
ing on the action a and the current state st .

4. p(rt+1|st , at) is the reward model that describes the immediate reward value that the agent receives
from the environment after performing an action in the current state st .

5. γ ∈ [0,1] is the discount factor which determines the importance of future rewards.

2.4.3. Interaction

Figure 2.4: Figure taken from [8]: interaction between a reinforcement learning agent and the environment. An action is taken by the
agent that results in some reward and a new state.

A reinforcement learning problem is commonly defined with the help of two main components: Environ-
ment and Agent.

With the interfaces provided above (Section 2.4.2), we can define an interaction process between an agent
and environment by assuming discrete time steps: t = 0,1,2, ...

2.4. Reinforcement Learning 11

1. The agent observes a state st ∈ S

2. and produces an action at time step t : at ∈ A(st)

3. which leads to a reward rt+1 ∈ R and the next state st+1

During this process, and as the agent aims to maximize its future reward, the agent consults a policy that
dictates which action to take, given a particular state.

Policy
A policy is a function that can be either deterministic or stochastic. The distribution π(a|s) is used for a
stochastic policy and a mapping function π(s) : S → A is used for a deterministic policy, whereas S is the set
of possible states and A is the set of possible actions.

The stochastic policy at time step t : πt is a mapping from state to action probabilities as a result of the agent’s
experience, and therefore, πt (a|s) is the probability that at = a when st = s.

Reward
The goal is that the agent learns how to select actions in order to maximize its future reward when submitting
them to the environment. We rely on the standard assumption that future rewards are discounted by a factor
of γ per time-step in the sense that the total discounted reward accounts to r1 +γ∗ r2 +γ2 ∗ r3 +γ3 ∗ r4 + ...)
Hence, we can define the future discounted return at time t as

Rt =
T∑

i=t
γi−t∗ri (2.11)

, where T is the length of the episode (which can be infinity if there is no maximum length for the episode).
The discounting factor has two purposes: it prevents the total reward from going to infinity (since 0 ≤ γ≤ 1),
and it enables the preferences of the agent for immediate rewards or potential future ones to be controlled.
[7]

Value Functions
When the transition function of an MPD is not available, model-free reinforcement learning allows the agent
to simply rely on some trial-and-error experience for action selection in order to learn an optimal policy.
Therefore, the value of a state s indicates how good or bad a state is for the agent to be in, measured by the
expected total reward for an agent starting from this state. Hence we introduce the value function, which
depends on the policy the agent chooses its actions to be guided by:

V π(s) = E[Rt] = E[
T∑

i=1
γi−1ri] ∀s ∈ S (2.12)

Among all value functions, there is an optimal value function which has higher values for all states

V ∗(s) = max
π

V π(s) ∀s ∈ S (2.13)

Furthermore, the optimal policy π∗ can be derived as

π∗ = argmax
π

V π(s) ∀s ∈ S (2.14)

In addition to the value of a state with respect to the expected total reward to be achieved, we might also be
interested in a value which determines the value of being an a certain state s and taking a certain action a. To
get there, we first introduce the Q function, which takes a state-action pair and returns a real value:

Q : S × A →R (2.15)

Finally, the optimal action-value function (or optimal Q function) Q∗(s, a) as the maximum expected return
achievable after seeing some state s and then taking some action a. That is,

12 2. Preliminaries

Q∗(s, a) = max
π
E[Rt |st = s, at = a,π] (2.16)

with the policy π mapping the states to either actions or distributions over actions.

The relationship between the optimal value function and the optimal action-value function is, as their names
suggest, easily obtained as

V ∗(s) = max
a

Q∗(s, a) ∀s ∈ S (2.17)

and thus the optimal policy for state s can be derived by choosing the action a that gives maximum value

π∗(s) = argmax
a

Q∗(s, a) ∀s ∈ S (2.18)

2.4.4. Environment
There are two types of environments: In a deterministic environment, both the state transition model and
reward model are deterministic functions. In this setup, if the agent in a given state st repeats a given action
a, the result will always be the same next state st+1 and reward rt . In a stochastic environment, there is uncer-
tainty about the outcome of taking an action a in state st as the next state st+1 and received reward rt might
not be the same each time. Deterministic environments are, in general, easier to solve as the agent learns to
improve the policy without uncertainties in the MDP.

2.4.5. Agent
The goal of the agent is to solve the MDP by finding the optimal policy, which means finding the sequence of
actions that leads to receiving the maximum possible reward. However, there are various approaches to this,
which are commonly categorized (see [7]) as follows.

A value based agent starts off with a random value function and then finds a new (improved) value func-
tion in an iterative process, until reaching the optimal value function (Eq. 2.13). As shown in Eq. 2.12 one
can easily derive the optimal policy from the optimal value function. A policy based agent starts off with a
random policy, then finds the value function of that policy and derives a new (improved) policy based on the
previous value function, until it finds the optimal policy (Eq. 2.18). Each policy is guaranteed to be a strict
improvement over the previous one (unless it is already optimal). As stated in Eq. 2.14, given a policy, one can
derive the value function. The actor-critic agent is a combination of a value-based and policy-based agent.
Both the policy and the reward from each state will be stored. Model-based agents attempt to approximate
the environment using a model. It then suggests the best possible behavior.

2.4.6. Deep Reinforcement Learning
From [3] goes: “Reinforcement learning can be naturally integrated with artificial neural networks to obtain
high-quality generalization”. The term generalization refers to the action-value function (Eq. 2.16) and the
fact that this value is estimated for each state separately–which becomes totally impractical for large state
spaces that can occur in real world scenarios. Deep reinforcement learning generally means approximating
the value function, the policy, or the model of reinforcement learning via a neural network. As is preferred
in reinforcement learning, neural networks approximate a function as a non-linear function. Therefore, the
estimate of the approximation is a local optimum, which is not always desirable. In our particular case, we
use deep reinforcement learning in order to approximate the action-value function (Eq. 2.16). Therefore, we
represent the action-value function with weights ω as,

Q(s, a;ω) ≈Q∗(s, a) (2.19)

Given a state s, the neural network outputs n linear output units (corresponding to n actions), as shown in
Figure 2.5. The agent will then choose the action with the maximum q-value.

2.4. Reinforcement Learning 13

Figure 2.5: Neural network outputs q-values

In terms of the previously described reinforcement end-to-end learning pipeline, the use of a function ap-
proximator simplifies this process. We can omit the state estimation step and instead rely on raw features
[29], as illustrated in Figure 2.6:

Figure 2.6: Deep Reinforcement learning end-to-end learning pipeline

3
Related Work

Compared to the execution problem, the literature for the order placement problem is sparse (as confirmed
by Guo et al. [21]). In this Chapter, we will provide an overview of the work relied upon for the foundations
of this project and for the insights they provided. We will first consider an empirical study of the general
behavior of order placements, which serves as the conceptual basis for this project. Then, we will present a
statistical approach which provides contrast to the subsequent overview of previous machine learning ap-
proaches. todo

3.1. Execution/Placement behaviour
Kearns et al. [31] determined which limit order price results in the most advantageous execution price. First,
the expected execution price is investigated with respect to the placement of the limit order. Based on this
analysis, the standard deviation of the resulting prices will identify the risk that comes with limit order place-
ment. Finally, by combining the previous two results, an efficient pricing frontier can be drawn which high-
lights the trade-off between risk and returns.

Regarding the definition stated in Section 2.3, their research can be categorized between order execution
and placement. No splitting of orders was performed, however a time horizon of several hours was chosen,
resulting in an evaluation of order placement with an extended time horizon.

Figure 3.1: Taken from [31]. An illustration of the pricing strategy that produces the most favorable expected execution price.

Figure 3.1 shows on the y-axis the return as the weighted average price paid of the expected execution
price while acquiring 10,000 shares of MSFT within one hour. The x-axis represents the limit level ranging
from -$50 to +$100. As is evident from the figure, the expected execution price is at its most favorable when
setting the limit price close to the price of the spread, although only on the buyer side with a price of ap-
proximately $10 lower than what is currently offered. The return becomes worse when placing orders deeper
in the order book (in other words, offering a lower price) as the orders then do not get filled within an hour
and instead, the inventory has to be bought by means of a market order at the end of the period. Likewise,
the return can be expected to be lower when placing the order higher in the order book (i.e. deeper in the

15

16 3. Related Work

opposing side of the book, meaning one is willing to pay more). This is due to the fact that the order is filled
instantly by paying a premium.

Figure 3.2: Taken from [31]. An illustration of the uncertainty of the expected execution price.

Risk is defined as the standard deviation of the returns and is illustrated on the y-axis in Figure 3.2. This
is an important aspect to be considered throughout our project as it illustrates the danger that arises from
placing limit orders at less favourable limit levels. As has been already demonstrated, orders which are placed
deep in either side of the book are less likely to be executed and their final prices are therefore necessarily less
certain.

Figure 3.3: Taken from [31] An illustration of the trade-off between risk and return indicated by a efficient pricing frontier.

Lastly, both techniques were combined and this resulted in an efficient pricing frontier (based on the
efficient frontier initially formulated by Harry Markowitz in 1952 [28]). Figure 3.3 shows the trade-off between
the risk (x-axis) and return (y-axis). In this example, the point of minimum risk is at (8,18) and the point of
maximum returns at (29,9). With this technique, a trader, or in our case a reinforcement learning agent, can
decide upon an execution strategy by choosing how much risk and return he is willing to accept.

3.2. Statistical approach
Substantial work in a statistical context was carried out by Chaiyakorn Yingsaeree in his dissertation [41]. A
framework was proposed for the making of order placement decisions based on the trade-off between the
profit gained from favorable execution prices and the risk of non-execution. An execution probability model
was developed which estimates the expected payoff (e.g. return) and its variance (=⇒ risk) while placing
orders at a certain limit level. This is followed by the application of mean variance optimization to balance
the trade-off. The framework was not able to beat the best static strategy in all evaluated cases, however the
improvement gained when it could beat the best static strategy was very significant. This gives us hope that,
where the statistical approach has its limitations, with the reinforcement learning approach presented in this
work, we may be able to understand the limitations of market data to a greater extent and avoid the short-
comings of the former strategy.

3.3. Supervised Learning approach 17

We are providing here an overview of the framework without specific application, as this would exceed the
scope of this overview.

The strategy is to buy x shares in time T , which leaves the trader with the following options:

1. Do nothing.

2. Submit a market order at t = 0 at price pM
0

3. Submit a market order at t = T at price pM
T

4. Submit limit order at price pL . If the order is not filled, either a market order follows or no action is
taken (depending on the use case).

A function UE (p) defines the payoff in the event of an execution at price p, and a function UN E (p) defines the
cost if the order is not executed at the end of the period at market price p. Consequently, the payoff the trader
will receive from submitting a limit buy order at price level L is defined as,

U (pL) =
{

UE (p), if order is executed.

UN E (pM
T), if not executed.

(3.1)

The expected price is compounded by a) the probability that the limit order at price pL will be executed before
the end of the period and b) the distribution of the asset price at the end of the period,

E[U (pL)] = PE (pL) U (pL)+ [1−PE (pL)]
∫ ∞

−∞
UN E (p) fpT

M |pL (p)d p (3.2)

, whereas PE (pL) is the probability that the limit order at price pL will be executed before the end of the
period, and fpT

M |pL (.) is the probability density function of the asset price at the end of the period.

Similarly, the variance was defined as V [U (pL)], and this was followed by a mean variance optimization step
which introduced the utility function,

UO(pL) = E[U (pL)]−λV [U (pL)] (3.3)

, whereas λ serves as a risk factor. That is, when λ= 0 the trader is concerned only about the profit, and when
λ = 1 the trader is equally concerned about profit, risk, and missed opportunities. As a result, the trade-off
between profit and risk was defined as,

p̂ = argmax
pL

UO(pL) (3.4)

3.3. Supervised Learning approach
Fletcher et al. [18] investigated order books with the aim of forecasting the movements of bid and ask prices
at time t +∆t . Although this was not directly applied to the optimization of order placement, the resulting
predictions can certainly be used as the limit price to be set while placing an order.

SVM classification techniques with different kernels along with two Multiple Kernel Learning (MKL) tech-
niques were used. The authors’ approach is a multi-class setup with three labels, A: P Bi d

t+∆t > P Ask
t , B: P Ask

t+∆t <
P Bi d

t and C: P Bi d
t+∆t < P Ask

t ,P Ask
t+∆t > P Bi d

t . The feature used is the volume at time t at each of the price levels
of the order book on both sides, is defined as a vector Vt . A set of features was constructed that contains
volumes from the current time t and previous time step t −1.

With a time delta (∆t) of 100 seconds, an accuracy of 51% was achieved. When a shorter time delta was
chosen, this resulted in significantly better performance. However, this was mostly due to the fact that the
zero movement prediction was accurate. An increased time delta resulted in significantly worse prediction
accuracy.

18 3. Related Work

3.4. Reinforcement Learning approach
A large-scale empirical application of reinforcement learning to optimize trade execution has been presented
by Kearns et al. [32]. Although the title of their research suggests otherwise, their work is related to order
placement with a larger time horizon H (2 minutes and 8 minutes), according to our definition in Section 2.3.
Their research objective is accordingly defined as:

to sell (or buy) V shares of a given stock within a fixed time period (or horizon) H, in a manner
that maximizes the revenue received (or minimizes the capital spent).

They built a reinforcement learning based on 1.5 years of millisecond time-scale limit order data from NAS-
DAQ. The investigation considered three stocks, AMZN, NVDA, and QCOM; each with an inventory I of 5,000
shares. The relative improvement over a submit-and-leave strategy ranged from 27.16% to 35.50%. An addi-
tional improvement of 12.85% was achieved by considering the following market variables: Spread, Immedi-
ate Cost, and Signed Volume.

The architecture developed is as follows. States are represented by a vector x ∈ X and correspond to an ob-
servation state that has the function of making a partially observable environment fully observable. Actions
(a ∈ A) represent the limit price relative to the current ask price, ask −a. That is, action a = 0 is the ask price,
a < 0 is a limit price deep in the book, and a > 0 is a limit order on the opposing side of the book. The reward
represent the VWAP (Eq. 2.10) of the executed order relative to the bid-ask mid price ((ask +bi d)/2). If the
order is not filled completely at the end of the time horizon H, then a market order follows. The chosen algo-
rithm is a slightly adapted version of the Q-Learning algorithm that was developed by the authors, and which
explores the state space inductively. Starting from t = T...0 the algorithm explores the inventories i = 0...I . At
each step, all possible actions in this state are evaluated, leading to the most rewarding strategy for t = 0.

4
Market data curation and feature

construction

In this chapter, we will outline the details of our data collection process, and how this data can subsequently
form a historical order book in order to serve as the historical data source for the match engine. We will
describe the way that raw market event data was collected from an exchange (Bittrex1 in our case) and pro-
cessed in order to form a historical limit order book. A sample period from the data set collected will then
be investigated in order to find and visualize the properties of the market in question and the behavior of the
corresponding market participants. The goal of the investigation is to find hypotheses which state why cer-
tain occurrences might be beneficial to consider for the purpose of limit order placement. Thus, the findings
serve as the basis for the feature construction process which determines the input for the learner. Therefore,
in the last section of this chapter, we will construct features which adequately address the stated hypotheses.
Finally, the features constructed will serve as the observed state that is to be evaluated by the reinforcement
learning agents described in Chapter 5.

4.1. Collection of market events
In most exchanges in the cryptocurrency domain, real-time market data is freely available. There is often a
limit as to how far into the past historical data is retained. However, continuously recording real-time data
results in a historical data set which is complete from the time when recording was started and has provided
the desired data set for this research. A historical limit order book consisting of states which store every bid
and ask posted by traders is commonly referred to as a complete order book. The process of accumulating the
data and building the order book is illustrated in a high level pipeline in Figure 4.1 below.

Figure 4.1: Data collection pipeline

Therefore, a complete order book is being reconstructed by processing market events that have occurred
over time with a given ticker (trading pair, in our case USD/BTC). There are three common types of events,
all of which are initiated by a market participant (trader): order created, order cancelled or order filled in the
event that a market order crosses the spread, resulting in a trade.

Our exchange of choice for collecting data was Bittrex as this exchange provides a SignalR2 (a library that
abstracts HTTP and WebSocket) interface from which one can extract all status updates (events) from the mar-
ket. More specifically, a status update is either a buy or sell order, or a fill (e.g. trade). Therefore, we subscribed
to https://socket.bittrex.com/signalr and filtered the data field M for updateExchangeState. The

1https://bittrex.com/
2https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr

19

20 4. Market data curation and feature construction

data type of the message contains the name of the trading pair and a nonce to identify the unique status
update. That is,

St atusUpd ate = {name,nonce,buy1, ...buyn , sel l1, ...sel ln , f i l l1, ... f i l ln} (4.1)

, whereas buy ∈ Or derLi mi t , sel l ∈ Or derLi mi t (see Eq. 2.3) and f i l l ∈ Tr ade (see Eq. 2.8). In this regard,
the orders hold an additional field t y pe ∈ {0,1,2} which specifies whether it was a create, cancel or change in
the order, whereby the changes of orders are neglected in our setup as this function is rarely used by traders.

It is evident that multiple events can be sent within one status update message. We segmented the status
update into separate events with the same nonce, so that each event expressed either a limit order of a side
bid or ask or a filled order resulting in a trade. We then defined an event as,

Event = {name,nonce, t y pe, i sTr ade, tr ade, i sBi d ,or der }, (4.2)

whereas i sTr ade ∈ {0,1} and i sBi d ∈ {0,1} indicating whether the update contains an order or a trade. Finally,
we made use of the data types defined in Chapter 2 (Sections 2.1 and 2.2) such that or der ∈Or derLi mi t and
tr ade ∈ Tr ade.

4.2. Reconstruction of an order book with market events
The next step was to transform the events collected into an order book structure. By chronologically iterating
over the processed events (Eq. 4.2), we created a new order book state (Eq. 2.7) for each such event. During
this iterative process, we ensured that the correct order book entries remained in future order book states, by
handling the events in accordance with their respective type, as follows:

Order created: an order book entry is added to the current state.

Order cancelled: the amount of shares as specified in the canceled order is subtracted from the entry in the
current state at the corresponding price level.

Order filled: the amount of shares traded is subtracted from the entry in the current state at the correspond-
ing price level.

As a result, a list of order book states is formed which constitutes a historical order book (Eq. 2.5). We ac-
knowledge that a list representation is by no means the highest-performing method of implementing an order
book, but for our purposes it is sufficient.

4.3. Formulating hypotheses of the market behaviour 21

4.3. Formulating hypotheses of the market behaviour
Let us take a random, ~10 minute period of the recorded market event data, and try to extract essential in-
formation from either raw events or the order book that has been generated. Figure 4.2 shows the price
movement of the chosen sample period, indicating a movement from $10,100 to $10,030 and back within 10
minutes. We first obtain an insight into the market situation with regard to some of the properties mentioned
in Section 2.1.2 and understand how market participants place orders. Our aim is then to find patterns of how
market participants behave and how this may affect the market. Subsequently, we will formulate hypotheses
which propose why certain properties might be beneficial to the order placement process, and thereby sug-
gest which properties might be worth considering in the feature construction process. However, we acknowl-
edge that the observations gleaned are based on a random sample of a historical data set, By no means does
this method guarantees that the same observations are true for any order book.

Figure 4.2: Price movement of sample data set

4.3.1. Importance of order prices

(a) Best bid and best ask (b) Deepest bid and deepest ask

Figure 4.3: USD/BTC price and bid/ask positions

In Figure 4.3a we show the same price movement including the best bid and ask price. Furthermore, the
deepest level of the bid and ask ask side is shown in Figure 4.3b. It is evident that the best bid and ask are
close to the market price before and after the price dip, meaning the spread is narrow. During the dip, the

22 4. Market data curation and feature construction

spread widens and is, at times, as large as $25.

Hypothesis: participants place limit orders close to the spread when the market price is stable and place them
further from the spread when the market price is fluctuating.

The orders placed at the deepest level on the buyer and seller side undergo a very interesting change. Im-
mediately before the the price dip, ask prices start to fluctuate as some participants cancel their listings. On
the contrary, bid prices remain much more stable. Likewise, during the fall and rise of the price, the ask price
starts to increase at the deepest level of the seller side. This phenomenon is, at first glance, unexpected as one
would expect the sell offers to decline as the price falls. As it can be seen that the price rises shortly after the
dip, we can postulate that some sellers’ intentions were to incentivize buyers with the fear that sell listings
could rise even further

Hypothesis: sellers incentivize buyers by placing higher prices on limit orders during a price fall.

4.3.2. Importance of order volume

It was shown that market participants position orders at different price levels as the asset price moves due to
trading. The second variable in posting orders is the volume and we aim to determine whether or not this is
a factor which is affected during price movements in the given sample period.

All events Trades only Orders created Orders canceled
Bids 51% 41% 54% 57%
Asks 49% 59% 46% 43%

Table 4.1: Bid / Ask volume imbalance

Table 4.1 shows the balance between the volumes of bid and ask orders. It does this by categorizing the
events as follows: all events, trade events only, order creations, and order cancellations. It is evident that, even
though the price moved significantly within the recorded time range, all the events and trade events only (the
first two categories defined above) are well balanced between the bid and ask side. Further, it is evident that
the market participants reacted to the sale of the asset by not only creating but also canceling more buy orders
than sell orders. This indicates that the market participants may have responded to the price dip by canceling
their current buy orders and posting them at a lower price in the book. Interestingly, even though the price
rose after the dip, the volumes of creations and cancellations of orders on the seller side were lower.

Hypothesis: the balance (or imbalance) between volumes of bids and asks of all event types allows us to es-
timate the future behavior of market participants.

4.3.3. Importance of volume of orders and trades over time

So far, volume has been investigated as a sum of events over time. In order to understand the behavior of
participants in greater detail, a volume map will provide an insight into single events occurring over time, as
shown in the following figures. The x-axis represents the time stamp and the y-axis is the volume of orders that
were placed or resulted in trades. For visibility reasons, the y-axis follows a log scale, since the volumes of the
majority of orders and trades are small and fewer have large volumes. Participants cannot be assigned to such
orders or trades, as the trader "ID" is non-public information. However, as we will see, one can identify some
participants on the basis of their behavior. Therefore, some of the more obvious patterns are highlighted in
the figures.

4.3. Formulating hypotheses of the market behaviour 23

Figure 4.4: Volume map of created bid and ask orders.

4.2).

Figure 4.5: Volume map of cancelled bid and ask orders.

24 4. Market data curation and feature construction

Figure 4.6: Volume map of trades initiated by a bid or ask order crossing the spread.

Figure 4.4 shows the volumes of the orders created. The volumes of most of the orders placed were less
than 1.0 BTC and significantly fewer orders had a larger volume, indicating that most of the participants were
either willing to buy and sell only small quantities, or split their orders to minimize the market impact. From a
horizontal perspective, one can detect some orders on both sides, bids and asks, that were placed at the same
time interval. This behavior is particularly evident at the regions highlighted on the volume axis just below
100. This is likely to be one or multiple bots posting orders of the same volume and perhaps at different
price levels. Furthermore, a very distinctive diagonal-shaped pattern occurs when a trader posts orders of
varying volumes within a short period of time. This might be evidence of someone splitting a large order into
small pieces (known as a buy- or sell wall). Surprisingly, this behavior most often appeared both while and
immediately after the market price started rising again.

For at least some of the limit orders that did not result in a trade, the cancellation that followed was ex-
pected. Figure 4.5 shows the canceled orders over time. Sequences of cancellations emerged more clearly
when volumes were just below 100 and at 10−3, and when these volumes and their respective time intervals
correlated with the sequences of the orders created, as shown in Figure 4.4 before. Hence, it is likely that there
was a trader following a strategy which involved creating and canceling orders in equal volumes. A cancella-
tion of one of the buy-walls that were created is particularly evident in both time stamps shortly after 13:34
and has a volume approximately equal to the one previously discovered during the observation of orders cre-
ated. That makes it likely that this wall was created and canceled by a single trader, and perhaps created again
as the same pattern occurred again in the order-creation figure at a later time stamp.

So far, only posted limit orders or their cancellations were observed. Not all of those limit orders might
have resulted in a trade. Figure 4.6 illustrates the volume map relating to the actual trades that occurred. It is
evident that the volumes of the trades transacted were 10−3, and oftentimes they had identical time intervals.
Additionally, a rapid series of many consecutive sales occurred around a time that correlates with the fall of
the market price. After the price fell, such sales were not present anymore. Let us remember that there was
one spike during the dip, and the time stamp related to it correlates strongly with the purchases (bids) visible
in this figure before 13:34 with volumes of 10−1.

Various behavioral patterns were observed by investigating events initiated by market participants over time.
For some, their impact on the market price is immediately obvious; for others it is hard to interpret visually.

4.3. Formulating hypotheses of the market behaviour 25

However, an attempt to find a correlation between the behavior of events and the resulting trades by means
of learning techniques seems promising.

Hypothesis: patterns arising from events in which there were variations in the volumes posted determine future
short-term trading behavior which can be exploited in favour of order placement.

4.3.4. Impact of traded price and volume

The price levels and volume of events over time was investigated in respect of each event type in the previous
subsections. Patterns were found and a hypothesis was proposed to the effect that the distribution of vol-
umes of orders is an indicator of the future behavior of market participants. If true, the market price would
eventually be influenced and this allows us to determine the optimal order placement. The next logical step
is to investigate the sum of the volumes traded over time, in combination with the price at which the asset
was traded.

Figure 4.7: Relation of trade volume to price movement.

Figure 4.7 shows the volumes of trades on both bid and ask sides which resulted in a buy or sell at a certain
price. The volumes of these trades are shown as dots of a size that indicates the traded volume and position
of each dot defines its respective price. As is known, a buy appears when one crosses the spread towards the
seller side (ask) and a sell appears when crossing towards the buyer side (bid). One can clearly see how buys
are listed at the best ask price and sells are listed at the best bid level. Before and during the dip, sells appeared
consecutively, followed by one large sell transaction. After that, a series of buy orders with low volumes oc-
curred, and this caused the minor spike. Interestingly, a rather large buy trade appeared shortly before the
price started to rise again. Even though sell transactions took place in the middle of the price rise, partici-
pants continued buying shortly thereafter. In conclusion, it is evident that a few trades with small volumes
caused a certain noise in the overall trend. Consecutive trades on one side or a single large trade, however,
led the market price to move for a substantially longer period of time in one direction.

Hypothesis: consecutive small trades or one large trade give an impulse that drives the market price up or
down.

26 4. Market data curation and feature construction

4.4. Feature construction
The previous section demonstrated certain trading behaviors of market participants in an order-driven mar-
ket, which ultimately determines the development of the limit order book. Hypotheses were laid out which
posit that the outcome in terms of a change in the order book constellation and price development can be re-
lated to the aforementioned trading behavior. This suggests that orders can be placed and filled at limit levels
which result in a favorable price. The following subsections will introduce features that are derived from the
previously collected (Section 4.1) and processed (Section 4.2) data and cover the assumptions stated in Sec-
tion 4.3. Instead of manually extracting features such as those shown in [18, 23, 32], the aim of this project is to
acquire knowledge directly from raw inputs, similar to a proven, successful method in the gaming sector[29]
and which was recently applied in the trading context[27].

4.4.1. Feature: price and size of historical orders

The first feature represents the order book (as defined in Eq. 2.5) and generated in Section 4.2. More precisely,
for each sample at time t , we use n order book entries (Eq.2.6) of m of the order book states (Eq. 2.7) with
time stamp t s ≤ t . As shown in Eq. 4.3, sbi d ask ∈ R+m×2×2n is the state observed by a reinforcement learning
agent. The order book states are ordered such that m is the closest to t . The n order book entries are closest
to the spread in which only the price bp (respectively ap) and size bs (respectively as) are considered.

sbi d ask =





bp11 bs11

bp12 bs12
...

...
bp1n bs1n

ap11 as11

ap12 as12
...

...
ap1n as1n





bp21 bs21

bp22 bs22
...

...
bp2n bs2n

ap21 as21

ap22 as22
...

...
ap2n as2n


· · ·



bpm1 bsm1

bpm2 bsm2
...

...
bpmn bsmn

apm1 asm1

apm2 asm2
...

...
apmn asmn




(4.3)

As the state will be observed by a deep learning agent that makes use of a neural network, the scaling
of inputs will contribute to a faster learning process. We therefore have applied normalization to the prices
(bp, ap) with respect to the best ask price for each state, that is api 1. Accordingly, we have also normalized
the sizes (bs, as) by reference to the size provided at the best ask price asi 1. While this method does not scale
the values of prices and sizes within a predefined range, the values sill decrease significantly. Furthermore,
empirical observations show that the minimum and maximum prices within a single order book state do not
differ by more than 2%, which determines the approximate scaling boundary.

This feature incorporates some of the previously stated hypotheses and therefore enables the learner to de-
termine whether the statements are valid or not. In particular, the feature includes historical order prices
(hypothesis 4.3.1), their volume (hypothesis 4.3.2 and partly 4.3.3).

Might be unnecessary according to our talk.

There remain the questions of how large the window of m order books states should be and the number
of limit levels that n should be chosen. The following observation provides an insight into the parameters;
however, by no means does it aim to make an estimate of how well the agent may perform under the consid-
eration of a certain parameter setup.

In order to determine the impact of n limit levels, we take the average of 100 evaluations whereas we take
1,000 random order book states for which we measure the Shannon entropy[36] for a range of 40 limit levels
(maximum of what goes from collection) on the bid and ask side, applied to price and size. The entropy
therefore serves as an indicator of how much information can be gained in respect of each limit level, derived
from the change in price and size for each state.

4.4. Feature construction 27

(a) Entropy of order prices (b) Entropy of order sizes

Figure 4.8: Entropy measured for 40 limit levels

It is noticeable that the entropy of prices of limit levels 0-30 on both bid and ask sides remains high, as
shown in Figure 4.8a. The price becomes slightly more constant for limit levels > 30. The entropy for order
sizes, as shown in Figure 4.8b, drops after 20 limit levels, which indicates that the accumulated order size
deep in the book is more constant. We therefore suggest considering at least 30 limit levels of the bid-ask
feature.

(a) Correlation of order prices (b) Correlation of order sizes

Figure 4.9: Correlation measured for 100 order book states

With this brief understanding of how limit levels n affect order prices and sizes, we will try to make a
statement about how order book states are related to the most recent state. More precisely, we will determine
the correlation between the order prices and sizes from the previous m states and the most recent order book
state. We will take an average of 100 evaluations whereas we take a single order book state at time t and a
sequence of 100 previous order book states for each of which we measure the Shannon entropy[36] to the
state at t , whereas n = 40 (maximum). As can be seen in Figure 4.9a, the correlation of the price positions
drop rapidly. However the effective change is not significant, indicating that the price changes are noticeable
but overall do not differ much. Order book states which lay more than 40 states in the past are slightly less
correlated with the current state. The correlation of order sizes, as shown in Figure 4.9b drops more rapidly
and to a much greater extent than the order prices. This indicates that traders choose a broad range of order
sizes. As a result, a window size of order book states m greater than 40 states is suggested, in order to benefit
from price differences within the feature.

4.4.2. Feature: price and size of historical trades
The previous feature provides information to the learner in order to reason about the hypotheses which are
derived from orders placed and canceled. In order to reason about whether or not trade events can provide
a positive learning effect to the agent to optimize order placement, we construct a feature that covers the

28 4. Market data curation and feature construction

hypotheses 4.3.4 and partially 4.3.3, as follows. A Tr ade (Eq. 2.8) carries an order side os, a quantity q and a
price p. Similar to the previous feature, in this feature, we take n trades into consideration, which occurred
prior the time of the order placement. More precisely, the feature is generated at some time t , when an order
is placed, and therefore the time stamp t s of the historical trades must satisfy t s ≤ t .

A straightforward approach would be to construct the feature str ade as,

str ade =


p1 q1 os1

p2 q2 os2
...

...
...

pn qn osn

 ∀ p, q,os, t s ∈ Tr ade (4.4)

, whereas t sn − t s1 ≤ m. However, trades do not occur at fixed time intervals and this causes the length of
the vector to vary. Accordingly, we calculate the time difference ∆t s between each historical trade and the
subsequent historical trade. For the most recent historical trade, the time difference is measured to the time
of the order placement t . That is,

∆t si =
{

t − t si if i = 1

t si+1 − t si otherwise
(4.5)

As a result we can redefine the feature str ade , that is used by the learner as observation state, as,

str ade =


∆t s1 p1 q1 os1

∆t s2 p2 q2 os2
...

...
...

...
∆t sn pn qn osn

 ∀ p, q,os, t s ∈ Tr ade (4.6)

In addition, the new feature is normalized such that the prices are divided by the market price pt and the
quantities are divided by the size of the order qt which is about to be placed at time t . As a result, we con-
structed a feature vector of length n (number of trades) that contains information about the price, order side
and quantity of historical trades, as well as their order of occurrence.

4.5. Conclusion
Event data was collected from the Bittrex cryptocurrency exchange and a limit order book was reconstructed
therefrom. This limit order book serves as the historical data set and source for the match engine in order to
simulate order placement. Subsequently the price chart, derived from the order book generated, was shown
and the underlying event data were investigated. Patterns were found which give insight into how market
participants positioned their orders, with respect to price and size. It was shown that the price movement was
likely to be due to (1) an imbalance between bid and ask orders; (2) a distinctive way of posting or canceling
orders; and (3) consecutive or impulsive trades. These findings were incorporated within the two features
constructed, and will serve as the observation state for the reinforcement learning agents that are described
in the following chapter.

5
Experimental reinforcement learning setup

Details of the components and techniques required for optimizing order placement was provided in Chapter
2, and previous approaches pursued by other researchers were introduced in Chapter 3. The process of col-
lecting historical event data and the construction of a limit order book was explained in Chapter 4. The data
was investigated and features were constructed to be used within the reinforcement learning setup. The next
step is to build a reinforcement learning environment which is flexible enough to enable a) investigations
with various types of features and agents to proceed, and b) adjustments to be made to important environ-
ment parameters. The correctness of this an environment is critical as it emulates a stock exchange and
therefore determines how orders would have been transacted in the past. If the implementation varies from
the one used in exchanges, or does not cover certain edge cases, the matching of placed orders would differ
significantly from the one in a production setup.

Therefore, this chapter aims to build an environment that includes the desired capabilities of a real world
exchange in order to determine how limit orders would have been processed, had they been placed at a
given point in time in the past. First, the setup of the environment is described, whereby we explain how the
components involved work in combination such that a learner can simulate order placement. Finally, two
implementations of reinforcement learning agents are provided. A Q-Learning agent will serve as the learner
when no market variables are provided and a Deep Q-Network agent is developed to handle the features
previously developed.

5.1. Order Placement Environment

The reinforcement learning environment (see Section 2.4.4), that emulates order placement on historical
market data, is introduced in this section. This environment enables an agent to buy or sell V shares within
a time horizon H and makes extensive use of the components previously described in Chapter 2. It works
principally by an agent observing a state st (observation state) at some time t and responding with an action
at that indicates the price at which to place the order in the order book. The task of the environment is then
to evaluate the outcome of the order placed and report to the agent along with a reward rt+1 and the next
state st+1. Subsequently, the order is canceled so that the agent can submit a new action for the remaining
shares to be bought or sold.

OpenAI Gym [16] is an open source toolkit for reinforcement learning. The interfaces of this toolkit were
used in order to follow their standards while building this environment. The advantage of this is that any
OpenAI Gym compatible agent and bench-marking tools can be applied in this environment.

29

30 5. Experimental reinforcement learning setup

5.1.1. Overview of components

Figure 5.1: Overview of reinforcement learning order placement environment.

Figure 5.1 shows the inner workings of the order placement environment. An agent will simulate and com-
plete the placement of one order of V shares with time horizon H within one epoch. More precisely, the agent
initializes an epoch by using the reset function, which clears the internal state of the environment stored in
its memory. The internal state consists of the remaining shares the agent has to buy or sell (as denoted by the
inventory i), the time t that the agent has left for the epoch, and the ongoing order that is to be placed. In
addition, a random point in time in the historical data set is chosen for the agent to run the initiated epoch
(e.g. placement of the order). The agent explores the environment using the step function which it uses to
send the desired action in order to place the order at a certain price level. The first component of the en-
vironment to react to the action when it is received is the order handling component. This recalls the order
the agent is currently trying to fill and adjusts the price in response to the action received. Subsequently, the
order is forwarded to the match engine, which attempts to execute the order within the historical order book.
The order, as well as the possible resulting trades generated during the matching process are then forwarded
to the evaluation component. Since it can take multiple steps for the agent to fill an order, this component is
responsible for updating and storing the remaining inventory and the consumed time horizon of the order in
the memory. Additionally, the index of the last visited order book state is stored so that, in a subsequent step,
the match engine will resume the matching from where it stopped last. If no trades result during the match-
ing process, only the time consumed for the matching process is subtracted from the order. Otherwise, the
sum of the sizes of the trades is subtracted from currently stored inventory in the memory. Subsequently, the
evaluation component calculates the reward based on the completed trades. If the order is not completely
filled after the last step taken by the agent, a market order is executed by the environment in order to enforce
the final state and therefore complete the epoch. Finally, the reward, the next observation state and confir-
mation of whether or not the order was completely filled (e.g. the epoch is done) is finally forwarded to the
agent.

5.1.2. Configuration parameters
For the environment to be sufficiently flexible for agents to place orders in various settings, a total of four
configuration parameters have to be defined: order side (OS), time horizon (H), time step length (∆t) and
feature type (FT). The Or der Si de (previously defined in Eq. 2.1) specifies whether the orders, which are
created within the environment, are intended to be buy or sell orders.

Figure 5.2: Segmented time horizon H with remaining time t .

5.1. Order Placement Environment 31

The time horizon parameter H defines the amount of time allocated in order to fill an order. The default
time horizon is set at 100 seconds, for the reasons described in Section 2.3, and this is the equivalent to the
Good-Till-Time option commonly seen in a financial markets (see 2.1.2). Furthermore, in this environment,
we intend the agents to take discrete steps, rather than continuous steps, as the latter would not be com-
putationally feasible within this work. The steps the agents will take are determined by the time horizon in
which the agent has to completely fill the order, and therefore, the time horizon is segmented into discrete
time steps t , as illustrated in Figure 5.2. As a result, the number of steps the agent can take are limited to the
number of steps t . Each step is of the same length ∆t which, for illustration purposes, has been set to 10 sec-
onds. We pick T as the maximum value of t , indicating that the entire amount of time is remaining, whereas
t = 0 means that the time horizon is consumed. Consequently, within a single epoch, the GTT of the order
is being set to ∆t for each step, until a total of total time of H is reached and the GTT is set to 0. Lastly, the
feature type F T determines which state is to be observed by the agent. The feature time can either be formed
by the private variables of the epoch only - inventory i and remaining time left t - or by a combination of the
private variables and one of the features described in Section 4.4.

5.1.3. State

Unlike in most traditional reinforcement learning environments, each step taken by the agent leads to a com-
plete change of the state space. Consider a chess board environment, where the state space is the board
equipped with figures. After every move taken by the agent, the state space would look exactly the same, ex-
cept for the movements of the figures in that step. The epoch would continue until the agent either wins or
loses the game and the state space would be reset to the very same setup for each epoch. In the order place-
ment environment however, it is as if, in each step, not only one or two figures of the chess board change
their position, but almost all of them. In addition, a reset of the environment would result in an ever chang-
ing setup of the figures on the chessboard. The reason for this is that the chessboard is, in our case, the order
book which is in essence a multivariate, possibly non-stationary, time series which changes over time. More
precisely, the state space S is defined as a sequence of order book states from which an agent can observe an
observation state Ot of the historical order book provided, at some point in time in the past. Therefore, the
observation state is the result of the order book state applied to the feature in use: Ot = F T (OSt). The final
state is reached when the entire inventory is bought or sold, that is i = 0–Checkmate!.

There are two general types of variables that can be used in order to create an observation state: private
variables and market variables [32]. For private variables, the size of the state space depends on the V shares
that have to be bought or sold and the given time horizon H , resulting in a state s ∈ R2. Market variables can
be any information derived from the order book at a given moment in time. In our case, the specified fea-
ture type (constructed in Section 4.4) defines the dimensions of the state the agent observes. Consequently,
market variables increase the state space drastically, due to (1) the initialization of the environment using
a random order book state and (2) the dimensionality of the feature set. Hence, for each step taken by the
agent, the order book states are likely to be different and thus the state the agent observes changes equally.

5.1.4. Action

The action submitted by the reinforcement learning agent defines at which price the place the order. We
define a fixed set of actions that an agent can take and that will correspond to a price level which is relative
to the current market price of the state of the historical order book. Therefore, a discrete action space A is a
vector (ami n , ..., amax) that represents a range of relative limit levels that an agent can choose from in order to
place an order. More precisely, ami n and amax define how deep and how high the order can be placed in the
book. The action a ∈ A is an offset relative to the market price pmT before the order was placed (at time step
t = T). Negative limit levels indicate the listing deep in the book and positive listings relate to the level on the
opposing side of the book. Hence, the price of the order placement p at some time step t is pt = pmT +ai ∗∆a,
whereas ∆a is a discrete step size chosen for the actions. An illustration of this concept is given in Figure 5.3.

32 5. Experimental reinforcement learning setup

Figure 5.3: Actions represent an offset relative to the order price at which to place the order in some order book state OSi at some time
step t .

By default, the action step size ∆a = $0.10. For example, with |A| = 5 the total action space is (pmT −
0.2, pmT −0.1, pmT , pmT +0.1, pmT +0.2). The action space is configurable and the default implementation is of
size |A| = 101, indicating that ami n =−50 and amax=50 result in order prices of p = pmT −$5 and p = pmT +$5
respectively.

5.1.5. Reward
As described in Section 2.3, the volume-weighted average price (see Eq. 2.10 serves as a measure of the return
for the order placement. Consequently, the reward is defined as the difference between the market price
before the order was placed pmT and the volume-weighted average price paid or received after the order has
been filled. Hence, with respect to buying assets, the reward is defined as r = pmT − pv w ap and for selling
assets, r = pv w ap −pmT . If no trades result during the matching process, the reward is r = 0, indicating that
no direct negative reward is provided. The reasons for this are that if the order could not be matched over the
course of the given time horizon, when t = 0, a market order follows which might produce trades at a price
worse than the market price before the placement started. In that case, a negative reward is ultimately given.
As a result, we define the discounted return (Eq. 2.11) as Rt = ∑t0

t ′=t γ
t ′−t ∗ rt ′ , whereas t0 is the time step at

which the agent has its time horizon fully consumed for the order of the current epoch.
Disclaimer: Since we are interested in the general ability of reinforcement learning to learn how to place

orders, potential maker or taker fees are not considered in this setup.

5.2. Q-Learning agent
The agent described in this section is generally known as Q-Learning[39]. In this work, Q-Learning serves to
(1) optimize order placement by using private variables only and (2) to have a measure of comparison while
evaluating possible advantages of featuring raw market data by using a Deep Q-Network agent (see Section
5.3 below), which is an extension of the Q-Learning agent. The name "Q-Learning" refers to the application
of the Q-function previously presented (Eq. 2.15). More specifically, it relies on the action-value function (Eq.
2.16) that obeys an important identity known as the Bellman equation. The intuition is that: if the optimal
value action-value Q∗(s′, a′) of the state s′ at the next time step t +1 was known for all possible actions a′, the
optimal strategy is to select the action a′ which maximizes the expected value of r +γ∗Q∗(s′, a′),

Q∗(s, a) = E[r +γmax
a′ Q∗(s′, a′)] ∀s ∈ s, a ∈ A, (5.1)

whereas 0 ≤ γ ≤ 1 is the discount rate which determines the value of future rewards, compared to the value
of the immediate reward. The aim of the iterative value approach is to estimate the action-value function by
using the Bellman equation as an iterative update,

Qi+1(s, a) = E[r +γmax
a′ Qi (s′, a′)] (5.2)

Value iteration algorithms then converge to the optimal action-value function Qi →Q∗ as i →∞. [37]

Q-Learning makes use of the aforementioned Bellman equation (Eq. 5.1), which undergoes an iterative up-
date. The algorithm has proven to be an efficient and effective choice for solving problems in a discrete state

5.3. Deep Q-Network agent 33

space. The limitations of this approach emerge when the agent is applied to large or continuous state spaces
[19]. They become more apparent when considering the algorithm presented above. The iterative update of
the action-value function Q(s, a) (defined in Eq. 2.16 and used in Eq. 5.1) is exposed to the size of state s and
action a, and thus if s is too large, the optimal policy π∗(s) (defined in Eq. 2.18) is not likely to converge. As
a result, the features derived in Chapter 4 are not applicable for this agent. However, private variables of the
environment, as described in Section 5.1.3, respect the aforementioned limitations. As a result, the obser-
vation the Q-Learning agent will make from the environment is defined by the discrete inventory unit i and
time step t , that is, s = (i , t).

Figure 5.4: Inventory of V segmented shares with a remaining inventory i .

The change in the fractions of the remaining inventory that occurs during matching process would, how-
ever, still result in a vast state space. Therefore, the V shares are divided into discrete inventory units i of size
∆i , as illustrated in Figure 5.4, and allow to approximate the order size when an order is updated. We pick I
as the maximum value for i , indicating that the entire inventory remains to be filled. The order is considered
as filled when i = 0, meaning that no inventory is left. Given the inventory units and the time steps, the state
space remains s ∈ R2 but becomes much smaller in its size, namely I×H . In the default setup, a segmentation
of 0.01 BTC steps is applied. For example, if the initial inventory is 1.0 BTC and the order is partially filled with
0.015 BTC during an epoch, the remaining inventory is 0.99 BTC (instead of 0.985) for the next step the agent
will take.

Algorithm 1 Q-Learning algorithm

1: Initialize Q(s, a) arbitrarily
2: for each episode do
3: for t=0...T do
4: for i=0...I do
5: s = (i , t)
6: Choose a from s using π derived from Q (ε-greedy)
7: Take action a, observe r, s′
8: Q(s, a) ←Q(s, a)+α[r +γmaxa′ Q(s′, a′)−Q(s, a)]
9: s ← s′

Finally, algorithm 1 describes the Q-Learning algorithm used in this work. An adaptation was made to a
conventional Q-Learning algorithm[37] regarding the order of the steps the agents will follow; this adaptation
therefore makes use of the same concept as presented in [32]. The agent solves the order placement problem
inductively, starting with the episode at state s = (i ,0), when t = 0. This has the benefit that the environment
forces a market order to be transacted at the beginning of an epoch, for each inventory unit i and therefore
provides immediate reward (see Section 5.1.5) to the agent. The agent then increments i and t independently
and the previously-seen reward will serve as the future reward, as the agent increases i and t . As a result, for
each epoch, the agent takes I ∗T steps. The Q function is updated given the state s and action a. Therefore,
the existing estimate of the action-value function is subtracted from the value of the action that is estimated to
return the maximum future reward. In addition, a learning rate α is introduced that specifies to which extent
new information should override previously learned information, with weighting 0 ≤ α ≤ 1. Eventually, the
agent completes the episode when every combination of t and i has been visited by the agent, that is in state
(I ,T). Hence, the agent has learned each discrete step i and t in the process of buying or selling V within the
time horizon H .

5.3. Deep Q-Network agent
The second agent presented in this section is known as Deep Q-Network[30]. DQN is a deep reinforcement
learning method that combines reinforcement learning with a class of artificial neural network known as

34 5. Experimental reinforcement learning setup

deep neural networks.

Notably, recent advances in deep neural networks, in which several layers of nodes are used to
build up progressively more abstract representations of the data, have made it possible for ar-
tificial neural networks to learn concepts such as object categories directly from raw sensory
data.[30]

We use one particularly successful architecture, the deep convolutional network[2], which uses hierarchical
layers of tiled convolutional filters to mimic the effects of receptive fields–thereby exploiting the correlations
present in trading activity.

layers

The neural network treats the right-hand side of the above mentioned Bellman equation (Eq. 5.1), with
weights ω, as a target, that is, r +γmaxa′ Q∗(s′, a′,ω). We then minimize the mean squared error (MSE) with
stochastic gradient descent,

L = (r +γmax
a′ Q∗(s′, a′,ω′)−Q(s, a,ω))2 (5.3)

While the optimal q-value converges for the Q-Learning approach by using a look-up table, the use of a non-
linear function approximator can cause the convergence due to (1) correlation between samples and (2) non-
stationary targets.

In order to remove correlations we use experience replay to build a data set D from the agent’s own expe-
riences. Accordingly, we store the agent’s experience et = (st , at ,rt , st+1) at each time-step t in the data set,
such that D t = e1, ...,et . During the learning process, Q-learning updates on samples (or mini-batches) of
these experiences (s, a,r, s′) ∼U (D), which are drawn uniformly at random from the pool of stored samples
in D . Hence, we prevent the learner from developing a pattern from the sequential nature of the experiences
the agent observes throughout one epoch. In our case, this might occur during a significant rise or fall in the
market price. In addition, experience replay stores rare experiences for much longer so that the agent can
learn them more often. That is, for example, when massive subsequent buy orders led to a noticeable change
in the order book.

Lastly, in order to deal with non-stationarity, the target network parameters δ′ are only updated with δ

every C steps and otherwise remain unchanged between individual updates.

6
Evaluation procedure and discussion of

results

In the previous Chapter, we built a reinforcement learning environment with the use of the components
which were described earlier, in Chapter 2. The environment facilitates the simulation of order placement
on historical order books of the type described in Chapter 4. Furthermore, two agents were introduced: a
Q-Learner which learns on private variables; and a Deep Q-Network which learns on market variables.

The aim of this chapter is to make use of this setup and to run simulations, thereby observing whether
or not reinforcement learning is indeed capable of optimizing the placement of limit orders. Therefore, a
comprehensive evaluation procedure will be introduced that measures the capabilities of the reinforcement
learning agents. Throughout this process, real world historical order books will be drawn upon, as well as
artificially created order books, where the latter define distinct price trends and eliminate the noise present
in real market data. We first outline the steps of the evaluation procedure. Subsequently, the real world data
sets chosen and their use within the reinforcement learning setup will be described. Finally, we will evaluate
the steps taken in respect of the order that will be used for illustrative purposes. Accordingly, this chapter will
seek to quantify the effectiveness of deep reinforcement learning and its use of the market features previously
constructed.

6.1. Explanation of the evaluation procedure
This section explains the evaluation procedure that will be elaborated in the following sections of this chapter.
From our analysis of the same, we will aim to formulate a statement that expresses the capabilities of opti-
mizing limit order placement with reinforcement learning and the use of raw market data. The evaluation
steps will proceed chronologically, as follows:

Empirical investigation: Section 6.3 investigates the reinforcement learning environment empirically by
simulating an agent’s behaviour that places buy and sell orders for a range of limit levels. This will pro-
vide knowledge about the limitations of the potential optimization possibilities within the given data
set and how well we can expect the reinforcement learners to perform. More precisely, we determine
the expected returns for (1) the optimally chosen limit order and (2) an immediate purchase or sale by
using a market order.

Q-Learning agent policy: In Section 6.4, we make an attempt to build an order placement policy based on
private variables only, by using the Q-Learner. This will provide insights into the performance of a naive
reinforcement learner and serve as a benchmark for the following simulations proceeded in which we
consider market variables. Thereby, we observe the average reward achieved by the Q-Learning agent
that uses private variables.

DQN agent policy: Section 6.5 applies market variables to the DQN agent. Hereby, we make use of Feature
I: the price and size of historical orders as described in Chapter 4 (Section 4.4.1); as well as Feature II:
the price and size of historical trades (described in Section 4.4.2). As in the previous evaluation step, we
will find the average rewards produced by the agent. More precisely, we determine the average rewards
for the DQN agent with the use of private variables and (1) historical orders or (2) historical trades.

35

36 6. Evaluation procedure and discussion of results

DQN agent limitations: Section 6.6 aims to determine the capabilities and limitations of the DQN agent
in greater detail. We investigate the actions selected by the agent in order to determine the agent’s
limitations. In addition, we apply the agent to an environment which is equipped with an artificially
generated order book and will enable us to determine to which extent the agent is able to learn from
certain price trends. The results achieved in this evaluation step are (1) the discovery of situations where
the DQN agent does not perform well and (2) the average reward achieved by using order books that
follow an artificially created trend (downwards and sine curve).

With the results obtained throughout this evaluation, we will be able to determine and quantify the extent to
which deep reinforcement learning can optimize limit order placement; we will also be able to give reasons
for its limitations.

6.2. Data sets and their usage in the reinforcement learning setup
We have selected two ∼30 minute samples of historical order book recordings for the experiments in this
chapter. One of the reasons for choosing two very different data sets is to determine the ability of the learners
to react to a variety of market situations. In addition, as explained in the following section, the expected
return of a learner for buying and selling assets heavily depends on the market price movements and therefore
the behaviour is expected to be different for the data sets in use. More precisely, data set I, as shown in
Figure 6.1a), is a downward trend (indicated by the bid/ask mid-price) and consists of 1132 order book states
with an overall duration of 1681.8 seconds, resulting in 0.67 states per second. In contrast, data set II, as
shown in Figure 6.1b, consists of 1469 order book states with an overall duration of 1746.0 seconds, resulting
in 0.84 states per second, which indicates that there was slightly more pressure in terms of orders placed
and canceled in this data set. When reinforcement learning is applied, the data sets are split with ratio 2 :
1, resulting in a training set of ∼20 minutes and a test set of ∼10 minutes. Although more than two data
sets would contribute towards a more generalizes outcome of the evaluation, this was computationally not
feasible within this work.

(a) 30 minute downwards trend (b) 30 minute upwards trend

Figure 6.1: Bid/ask mid-price of 30 minute order book recordings.

As explained in Chapter 5, the historical data sets are not maintained by the reinforcement learning agents
directly but instead by the reinforcement learning environment. The environment provides an observation
state O, derived from the data set, to an agent, after which the agent decides to take an action a in the form
of a limit level. In turn, the environment prices the order at the received price level and returns the evaluated
reward r and the next observation state O to the agent. In this way, the agent can simulate the placement of
limit orders in such a way that, within the given time horizon H , the inventory can be either bought or sold.
For each epoch an agent processes, one order, with a specified inventory and time horizon, is defined and is
to be filled. Therefore, the reinforcement learning environment selects, for each epoch the agent initiates,
a range of order book states which form the given time horizon H within which the agent is supposed to
complete an order.

6.3. An empirical investigation of the reinforcement learning environment 37

Figure 6.2: Order placement training and testing on an order book data set.

Figure 6.2 illustrates this process. A randomly-chosen order book state defines the beginning of the time
horizon and the set of order book states that fall into this window. This is very crucial since the states within
this time horizon and the set of states, not only leads to the observation states received by the agent, but
also will determine the outcome of the matching process. More precisely, for each step the agent takes, a
consecutive sequence of order book states (with time stamp difference of∆t) will be considered by the match
engine, as explained in the previous chapter in Section 5.1.2. This process is identical for testing, except that
the underlying data is different and the agent will not learn from the epochs proceeded during testing and
instead will report the achieved rewards.

6.3. An empirical investigation of the reinforcement learning environment
In this section, the relationship between the limit order placement and the received return will be investi-
gated. The methods demonstrated are based on the related work described in Section 3.1 and provide the
ability to empirically evaluate the reinforcement learning environment (Chapter 5). Therefore, we simulate
an agent that submits actions in order to buy and sell shares at every possible limit level and records the im-
mediate returns it receives. A return is defined as the difference between the market price prior to the order
placement and the volume- weighted average price (VWAP) paid or received, as stated in Eq. 5.1.5. As a result,
we gain an understanding of the estimated rewards of limit order placement using the given historical data
set. In addition, these results set a benchmark for the reinforcement learners to come.

We will now describe the setup of this investigation. We investigate the rewards of limit orders placed on
progressively increasing time horizons, from 10 seconds to 100 seconds, and thereby observe the importance
of the action chosen by the agents in order to buy or sell assets, in accordance with the length of the time
horizon. For each time horizon, we place (e.g. cross-validating) 100 orders of size 1.0 BTC at the beginning
of the time horizon whose beginning is defined by a randomly-chosen order book state. A market order
follows for the remainder of shares (if any) once the time horizon is consumed. The expected return is then
derived from the average of the received returns of these 100 orders. This process is repeated across a range
of 201 actions A that correspond to the limit levels −100...100 with step size ∆a = $0.10, resulting in orders
priced in the range of pm −10 . . . pm +10, whereas pm is the market price before the order was placed. The
limit levels are chosen broadly in order to retrieve understanding about the outcome of a variety of possible
actions. Hence, a total of 20,100 orders are submitted for each time horizon defined. Finally, the investigation
is undertaken for both data sets I and II.

6.3.1. Order placement behavior on data set I
For data set I, where the market sees a downwards trend, the intuition is as follows: We expect buy orders
to result in better returns when placed deep in the order book, in other words, on orders that have a highly
negative limit level (a < 0). Since the price tends to fall, the assumption is that an agent is able to buy at a
lower price once time has passed. Therefore, the longer the time horizon, the lower the limit level that can

38 6. Evaluation procedure and discussion of results

still be chosen in order to execute the full amount of shares. In contrast, we expect sell orders to provide
better returns when the agent crosses the spread with a positive limit level (a > 0). The assumption is that,
in a falling market, it is unlikely that market participants are willing to buy at higher prices and therefore the
agent must place sell orders higher in the book in order to sell immediately. Otherwise, the longer the time
horizon, the less return an agent would retrieve as the market order, that is submitted if the order has not
been filled, becomes costly. This investigation is shown in Figure 6.3 for time horizons of 10, 30, 60 and 100
seconds. The x-axis indicates the placement of the order at limit levels ranging from a = −100 to a = +100
and the y-axis indicates the average return received.

With a time horizon of only 10 seconds left, the expected behavior is, however, proven wrong. For buy
orders, shown in Figure 6.3a, the returns suggest that orders be placed close to the spread, but still on the
opposing side, at a limit level of ∼+5. The spike at limit level ∼-5 indicates that the overall best return was
produced at this level. However, this comes with the risk that the orders fail to execute, which is indicated by
the downward spike also close to level ∼-5. For selling within 10 seconds, as shown in Figure 6.4b, the best
return is given when crossing the spread with a positive limit level of ∼+50.

With an increased time horizon of a total of 30 seconds, as shown in Figures 6.3c and 6.3d, the expected
behavior becomes more apparent. Positive returns can be achieved by posting buy orders deep in the order
book. Therefore, we can expect that in the given market situation, an agent would be able to partially execute
the order at very low limit levels and, for the unexecuted part, a market order would follow. The densest range
of positive returns can be seen around the limit levels just below the spread. Orders placed deeper in the
book oftentimes result in slightly lower returns, which indicates that the orders were only filled partially and
expensive market orders followed. Crossing the spread causes increasingly lower returns, the more positive
the limit level is chosen, as a result of agents’ willingness to immediately buy at an increasing price. The
opposite effect occurs while selling assets. Market orders higher in the book result in better returns than limit
orders deep in the book. Interestingly, orders which were placed very deep in the book, at limit level ∼-50
and below, are rewarded better than the ones close to the spread. The most likely reasons it that a minority of
orders were partially filled at this level during the cross-validation process.

With time horizons of 60 and 100 seconds, the expected behavior of the orders is clearly apparent. Buy
orders, as shown in Figures 6.3e and 6.3g, achieve highest returns when placed very deep in the order book.
However, when placed too deep, at levels -100, the returns are slightly lower as a result of unexecuted orders
which had to be completed with market orders. In addition, positive limit levels become stable at this range
since there are more sellers in the market with the extended time horizon. Therefore, very highly placed
orders have the same effect as limit orders posted only slightly above the spread. Furthermore, placing orders
very deep in the book has the same effect as when placing them just below the spread; that is, there are no
traders willing to buy at such a high price and therefore market orders follow once time has passed.

6.3. An empirical investigation of the reinforcement learning environment 39

(a) Returns of buy orders within 10 seconds (b) Returns of sell orders within 10 seconds

(c) Returns of buy orders within 30 seconds (d) Returns of sell orders within 30 seconds

(e) Returns of buy orders within 60 seconds (f) Returns of sell orders 60 seconds

(g) Returns of buy orders 100 seconds (h) Returns of sell orders 100 seconds

Figure 6.3: Returns of buy and sell orders executed within 10, 30, 60 and 100 seconds on data set I.

40 6. Evaluation procedure and discussion of results

(a) Returns of buy orders within 10 seconds (b) Returns of sell orders within 10 seconds

(c) Returns of buy orders within 30 seconds (d) Returns of sell orders within 30 seconds

(e) Returns of buy orders within 60 seconds (f) Returns of sell orders 60 seconds

(g) Returns of buy orders 100 seconds (h) Returns of sell orders 100 seconds

Figure 6.4: Returns of buy and sell orders executed within 10, 30, 60 and 100 seconds on data set II.

6.3. An empirical investigation of the reinforcement learning environment 41

6.3.2. Order placement behavior on data set II

For data set II, which shows an upward price trend, the intuition is the opposite as for the investigation using
data set I. We expect buy orders to result in better returns when immediately filled, that is, when the agent
crosses the spread and places the order high in the book (a > 0). The assumption is that, as time passes and
the market price rises, other traders become less willing to sell at the market price or lower. Therefore, the
longer the time horizon given to the agent, the more critical it becomes to execute immediately; otherwise,
shares would have to be bought at an increased market price. In contrast, better returns with sell orders are
expected when placed deep in the book (a < 0), meaning that they are sold at a higher price. The assumption
is that, as the price rises, market participants become more likely to buy assets at higher prices. Hence, the
longer the time horizon, the deeper in the book the agent should place a limit sell order. We investigate these
assumptions by performing the same experiment as in the previous section, with time horizons of 10, 30, 60
and 100 seconds, as shown in Figure 6.4.

The returns of buy orders filled within a time horizon of 10 seconds, as shown in Figure 6.4a, correlate with
the above-mentioned assumptions. The highest returns are achieved when crossing the spread and, although
limit levels in the range of 1-50 tend to perform the same, and considering the risk of paying a premium, the
wisest choice for the agent would be to choose the level closest to the spread. The sell orders placed with
a time horizon of 10 seconds contradict the assumptions, as shown in Figure 6.4b. The agent obtains the
highest rewards when choosing a price for the order at market price a = 0. A highly negative limit level yields
a return of approximately $3.00 less than when placing at the suggested market price.

With 30 seconds left to buy 1.0 BTC (Figure 6.4c), the orders placed with a > 0 (above the spread) become
stable for any such limit level. This is likely due to the higher order pressure of data set II, as described in
Section 6.2, as there are more market participants willing to sell. The returns for limit sell orders, as shown
in Figure 6.4d, become more rewarding as the agent benefits from a slight increase in price within the given
time horizon.

This pattern becomes clearly apparent when a time horizon of 60 and 100 seconds was given, as shown in
Figures 6.4f and 6.4h respectively. With the increased time horizon, the assumptions stated in the beginning
of this section are confirmed and the agent, when trying to sell shares, should indeed place orders deep in
the order book (a < 0). As time passes and the market price rises, market participants are willing to buy at an
increasing price and the agent is expected to be able to sell all assets at this increased price without the need
for a further market order. In contrast, if the agent decides to sell the assets at a decreasing price, as indicated
by the higher limit levels, a lower reward can be expected when a > 0. More precisely, for a time horizon of 100
seconds, the agent is expected to receive up to $7.00 less when choosing to cross the spread with a limit level
of +100, as opposed to a negative limit level. Figures 6.4e and 6.4g show the expected results of an agent that
buys assets within 60 and 100 seconds respectively. It is evident from the figures that the rise in the market
price means that the expected damage can be minimized by crossing the spread and buying immediately.
The advice stated before remains valid: the agent should choose a price slightly above the market price as
there is enough liquidity in the market to buy the demanded number of assets.

6.3.3. Conclusion of empirical analysis

From the results of the empirical analysis performed on data sets I and II, the following observations can be
made with respect to limit order placement: during a fall in the market price, the purchase prices of assets
can be optimized by placing limit orders deep in the order book (a < 0) and the least loss is sustained when
selling assets immediately to the market price (a > 0). In contrast, during a rising market, it is suggested that
assets be purchased using a market order (a > 0) and sale prices can be optimized by placing the sell orders
deep in the order book (a < 0). These effects become more apparent when a longer time horizon is given for
an order. With regard to shorter time horizons, the order placement process tends to be either intercepted
by short term fluctuations or low trading volumes. The latter implies that, during an upwards trend, market
participants are willing to buy and sell shares at higher prices and on the contrary, during a downwards trend
at lower prices. In this analysis, the orders placed had to be completely filled without the ability to take
intermediate steps of canceling and replacing the order within the given time horizon. Therefore, it falls to
the reinforcement learners to evaluate whether or not such amendments to the order will result in a more
favorable reward. In order to have a measure of comparison for the reinforcement learning agents to come,
Table 6.1 summarizes the findings and shows the expected rewards for (1) the optimal limit level chosen and
(2) an immediate completion of the order using a market order.

42 6. Evaluation procedure and discussion of results

E[Limit order] (optimal) E[Market order]
Buy (I) 15.20 -0.05
Sell (I) -27.70 -27.70
Buy (II) -1.06 -1.06
Sell (II) 3.68 -1.72

Table 6.1: Summary of rewards derived form the empirical analysis.

6.4. Q-Learning without market variables
The previous section provided knowledge about the expected rewards an agent will receive when placing buy
and sell orders using the reinforcement learning environment and with the underlying data set I and II. For
each such observation, a fixed time horizon was chosen for which an order was placed in the order book,
followed by a market order in case the order has not been filled completely.

This section aims to investigate whether or not a Q-Learning agent, as described in Chapter 5 (Section
5.2), can improve the rewards received over the expected return for a market order as derived in the previ-
ous section. Thereby, the agent is allowed to cancel its order after every 10 seconds and place a new order
with the remaining inventory (e.g. ∆t = 10), until the time horizon of 100 seconds has been fully consumed.
Subsequently, and in the event that the order has not been filled completely, a market order is issued for the
remaining share to be bought or sold. For both data sets (I and II), an independent learning experiment is
being proceeded where the agent is supposed to either buy or sell shares. In each experiment, the training is
limited to 5000 epochs and 1000 orders are being placed and evaluated on the test set (defined as "backtest-
ing"). The Q-Learning agent is set up as follows: the learning rate selectedα= 0.1 is small due to the extensive
number of steps the agent will take throughout the epochs. The discount factor γ= 0.5 is chosen to balance
the agent’s incentive to profit from immediate rewards and consuming the entirety of the given time horizon.
Initially, the exploration constant ε is set to 0.8 and a decay is applied such that the factor reduces to ε = 0.1
by the time the training is completed. This allows the agent first to explore the action space and then exploit
on the learned optimal actions to take.

With this setup, four observations were made and for each, the training and testing results are stated
below. During training, the mean rewards and the average action chosen for each epoch were recorded.
Once the model was trained, a backtest was run on the test data sets, in which the agent executed orders by
choosing from the learned optimal actions.

6.4.1. Results of training and testing on data sets I and II
Figure 6.5 shows the training on data set I. The average reward received during the training is shown in Figure
6.5a. Over the course of 5000 epochs, the agent was able to improve the mean reward by approximately
∼0.5, as a result of the change in actions chosen. This is illustrated in Figure 6.5b. The agent started off
with the average action of ∼-3, which is a result of the low epsilon parameter that makes the agent choose
actions randomly. Actions were then adapted to the more negative side of the order book, such that after
∼1500 epochs, the agent chose actions as low as -20 and then adjusted and stagnated at ∼-15. During the
backtest, 1000 orders were executed on the test data set, which resulted in an average reward of -1.17. Making
a comparison between the results of the empirical analysis performed on the same data set, as shown in
Figure 6.3, provides means for interpretation: The policy learned by the Q-Learning agent performs worse
than the expected cost of a market order, which was $-1.12 when buying 1.0 BTC; this is shown in Section 6.3.
The highly negative average actions the agent choose toward the end of the training indicates that the order
might not oftentimes have been able to be filled within the time horizon and an expensive market order had
to follow.

The rewards received for the agents’ tasks of selling the assets are much more volatile than for buying,
as shown in Figure 6.5c, and no clear improvement can be seen. In addition, no significant adjustment was
made by the agent regarding the mean of the actions chosen, as indicated in Figure 6.5d. The backtest resulted
in the achievement of an average reward of -21.34 by the agent. The reward received for placing market orders
on the test set account to a negative reward of -27.70. Hence, the agent is able to save $6.36 when selling 1.0
BTC.

Figure 6.6 shows the experiment performed on data set II. The average reward received while training to buy
the asset is shown in Figure 6.6a. Throughout the epochs, the agent was able to improve the mean reward by

6.4. Q-Learning without market variables 43

(a) Mean rewards per epoch (buy) (b) Mean of actions per epoch (buy)

(c) Mean rewards per epoch (sell) (d) Mean of actions per epoch (sell)

Figure 6.5: Mean rewards and actions for buying and selling on training data set I.

(a) Mean rewards per epoch (buy) (b) Mean of actions per epoch (buy)

(c) Mean rewards per epoch (sell) (d) Mean of actions per epoch (sell)

Figure 6.6: Mean rewards and actions for buying and selling on training data set II.

44 6. Evaluation procedure and discussion of results

approximately 0.5, which was a similar result to that obtained with the previous data set (I), . Even though the
trend of this data set is the opposite, the change in chosen actions correlates to the previous findings and is
illustrated in Figure 6.6b. The backtest on test data set II resulted in an average reward of -1.04 –, again worse
than the average reward received with the training set. A market order on test data set to accounts to an av-
erage reward of -1.06, indicating that the agent’s policy is saving $0.02 when buying 1.0 BTC. On the basis of
the empirical analysis performed when buying on this data set, as shown in Figure 6.4, and comparing it to
the rewards received by the agent, implies that the agent failed to execute orders with the limit orders placed
and oftentimes market orders must have followed.

As with the sell orders placed on data set I, the rewards received for the agent’s tasks to sell the assets in
data set II are very volatile, as shown in Figure 6.5c. No improvement can be seen from the rewards during the
training and no significant adjustment was made by the agent regarding the actions chosen, as indicated in
Figure 6.6d. The backtest resulted in an average reward of -4.74 achieved by the agent, whereas market orders
are expected to result in an average reward of -1.72. Hence, the use of an requires the payment of a premium
of $3.02 when selling 1.0 BTC.

6.4.2. Conclusion of Q-Learning approach

Q-Learner
E[Market
Order]

Buy (I) -1.17 -0.05
Sell (I) -21.34 -27.70
Buy (II) -1.04 -1.06
Sell (II) -4.74 -1.72

Table 6.2: Summary of rewards for the Q-Learning agent and market orders.

The findings of this section are summarized in Table 6.2. We conclude that the Q-Learning agent was not able
to constantly place buy and sell orders in a way which would result in a price better than the current market
price. Oftentimes, a market order, which would trigger an immediate purchase or sale, would be the better
choice. Clearly, this is due to the fact that the agent was not able to find the most suitable actions. Further-
more, in order to investigate whether or not these findings were a result of the agent aiming for a reward that
was too immediate, the same experiment was performed with γ= 0.3 and therefore rely more extensively on
the future rewards. However, no improvement could be achieved and instead, the agent achieved similar re-
wards while requiring more epochs in order to converge to the same mean of actions. In this section, we have
only investigated the mean of the actions chosen throughout an epoch, which has provided evidence, which
we regard as sufficient, that the chosen actions resulted mostly in market orders. Furthermore, it is to be
assumed that the absence of market variables, while only relying on the given rewards, makes it hard for any
learner to determine an optimal policy. Therefore, the following section will make use of market variables in
order to determine whether or not a learner can exploit the information hidden in the market and therefore
act in favor of optimally placing limit orders.

6.5. Deep Q-Network with market features
In the previous section, the Q-Learning agent was trained on data sets I and II, and no significant optimization
in terms of the buying and selling of assets was achieved. By considering the above-mentioned results of the
empirical analysis of the limit order placement behavior, we found that most of the limit orders placed by
the Q-Learning agent were not filled within the given time horizon and instead, market orders had to be
submitted after the time was consumed.

In this section, we aim to determine whether or not the DQN agent is capable of extracting information
provided by the raw market features and therefore improve the limit order placement policy. The setup is
the same as in the previous section, where the agents task is to buy and sell 1.0 BTC within 100 seconds with
discrete step size ∆t = 10 in both data sets I and II. Furthermore, both of the features constructed in Chapter
4, will be applied and investigated separately. The input shape of the model in use that approximates the
action-value function, as described in Chapter 2 (Section 2.4.6), is therefore determined by the chosen feature
and is described below. After extensive investigations with many such models, including a multi-layer neural
network[38] (2 hidden layers), a long short-term neural network (LSTM)[20], and the convolutional neural

6.5. Deep Q-Network with market features 45

network (CNN) described in Section 5.3. The best performance was achieved with the latter and thus this
model is used for this analysis. For both DQN agents, we relied on the default hyperparameters worked out
by Mnih et al. [30], as shown in Figure 6.7. Finally, we conclude our findings and determine the capabilities
of the DQN approach (and its use of the market features) by comparing it to the expected rewards found in
Section 6.3.

Figure 6.7: The values of all the hyperparameters were selected. We did not perform a systematic grid search owing to the high compu-
tational cost, although it is conceivable that better results could be obtained by tuning these hyperparameter values.

6.5.1. Application of historical order feature

The following evaluation of the DQN agent considers historical order book states as described in Chapter 4
(Section 4.4.1) which we will denote henceforth as Feature I. Therefore, a lookback of 30 historical order book
states are considered and the number of levels in each state is limited to 20 for bids and asks respectively.
Consequently, this feature set is of size: (2∗ lookback, l i mi t l evel s,2) =⇒ (60,20,2). When we included the
two private variables by appending a vector [i nventor y, t i me] at the beginning of this feature vector, the size
of the feature set was (61,20,2) and, as such, will serve as the input for the CNN.

46 6. Evaluation procedure and discussion of results

(a) Reward per epoch (buy) (b) Mean of actions per epoch (buy)

(c) Mean rewards per epoch (sell) (d) Mean of actions per epoch (sell)

Figure 6.8: DQN agent rewards and mean of actions for buying and selling on training data set I using feature I.

(a) Reward per epoch (buy) (b) Mean of actions per epoch (buy)

(c) Mean rewards per epoch (sell) (d) Mean of actions per epoch (sell)

Figure 6.9: DQN agent rewards and mean of actions for buying and selling on training data set II using feature I.

6.5. Deep Q-Network with market features 47

Figure 6.8 shows the learning process using data set I. During the training process relating to the pur-
chase of assets, the rewards obtained consistently improved over the course of the 5000 epochs (Figure 6.8a),
throughout which the agent steadily adjusted the actions to be chosen more negatively (Figure 6.8b). After
2000 epochs, the average chosen action stagnated just below -20, which is $2.00 below the market price. It is
evident that this adjustment is not as linear as it was during the training of the Q-Learning agent, as shown in
the previous section. However, the adjustment is appropriate since the market price was falling. Therefore,
the achieved reward during the backtest resulted in 22.06, which is a significant improvement compared to
the expected return of -0.05 for a market order.

The rewards obtained from selling are shown in Figure 6.8c and the average chosen action throughout the
epochs is shown in Figure 6.8d. The rewards did not improve over the course of the training and the agent did
not choose to adjust the actions on average. Possibly, this was due to the constantly negative rewards obtained
during the training under market conditions that were difficult for the sale of assets while the market price
was falling. As a result, during the backtest, a negative reward of -39.26 was achieved, much worse than a
market orde,r which comes with the expected return of -27.70 and therefore indicate that the agent, despite
a falling market, tried to sell with limit orders instead of market orders.

Figure 6.9 shows the agent’s learning process using data set II. Over the course of 5000 epochs, the agent
was not able to improve its reward and instead, stagnated on average at approximately $0.00 rewards per
epoch, as shown in Figure 6.9a. The agent adjusted the chosen actions steadily such that the average limit
level fell to elow -20 at epoch 2000 and remained at this level, as shown in Figure 6.9b. Therefore, the reward
was a product of market orders as the orders with these limit levels were most likely not filled. After all, the
backtest resulted in an average reward of -2.26 which is slightly worse than the expected market order reward
of -1.06.

The rewards for the agent that learned to sell assets are shown in Figure 6.6c. The rewards could not
be improved during the training, even though the agent lowered the average action chosen to below -20, as
shown in Figure 6.6d. In such rising market conditions, the rewards observed are a product of the market
order, since negative actions will likely not result in a filled order.

The rewards for selling assets in this rising market could be improved and, after 1000 training epochs, kept
constantly above $0.00, as shown in Figure 6.6c. Therefore, the average of actions chosen for an epoch was
lowered within the first 1000 epochs and, thereafter, remained at approximately -10, which correlates with
the rewards obtained . Finally, the backtest resulted in an average reward of 0.84, which is an improvement
compared to the expected reward of -1.72 for a market.

Table 6.3 summarizes the average rewards observed during the backtest using the DQN agent that uses
Feature I, which includes 30 historical order book states as features and therefore has knowledge about the
change in created and canceled orders. Overall, the DQN agent was able to optimize limit order placement
when the given market conditions came in favor of making a purchase or sale respectively. More precisely,
significant improvements were made when the task was to buy assets and the market price was falling. A mi-
nor optimization was achieved when the task was to sell assets and the market price was rising. Under these
conditions, the DQN agent performed better than the Q-Learning agent. However, when market conditions
were not favorable to the intention to either buy or sell, the agent performed not only worse than the expected
return of a market order but also worse than the Q-Learning agent.

DQN (Feature I)
E[Market
Order]

Buy (I) 22.06 -0.05
Sell (I) -39.26 -27.70
Buy (II) -2.26 -1.06
Sell (II) 0.84 -1.72

Table 6.3: Summary of rewards during backtest of DQN agent using Feature I (historical orders).

6.5.2. Application of historical trade feature
The following evaluation of the DQN agent considers historical trades as described in Chapter 4 (Section
4.4.2), defined henceforth as Feature II. Therefore, a lookback of 30 trades are considered. Consequently,
this feature set is of size: (l ookback,4) =⇒ (30,3). When we included the two private variables that were
appended as a vector [i nventor y, t i me,0,0] at the beginning of this feature vector, the result was a feature

48 6. Evaluation procedure and discussion of results

set of size (31,4), which will serve as the input for the CNN.

(a) Reward per epoch (buy) (b) Mean of actions per epoch (buy)

(c) Mean rewards per epoch (sell) (d) Mean of actions per epoch (sell)

Figure 6.10: DQN agent rewards and mean of actions for buying and selling on training data set I using feature II.

6.5. Deep Q-Network with market features 49

(a) Reward per epoch (buy) (b) Mean of actions per epoch (buy)

(c) Mean rewards per epoch (sell) (d) Mean of actions per epoch (sell)

Figure 6.11: DQN agent rewards and mean of actions for buying and selling on training data set II using feature II.

Figure 6.10 illustrates the learning process of the agent for buying and selling using data set I. As with the
agent that was provided with Feature I, the rewards received could be slightly improved over the course of
5000 epochs, which is shown in Figure 6.10a. Interestingly, the average action per epoch converged at just
below -40 after an abrupt adjustment was made after 4000 epochs. The average reward achieved during the
backtest is 31.92 and is a clear improvement compared to the expected market order return of -0.05.

The rewards received for selling remained at -20, as shown in Figure 6.10c. However, the average of the
actions chosen remain volatile and no clear trend can be seen in Figure 6.10d. This is by no means a negative
sign; perhaps the agent learned to respond to distinct patterns with appropriate measures. As a result, during
the backtest, an average reward of -35.15 was achieved, which is still worse than the expected return of a
market order but significantly better than the DQN agent under the application of Feature I.

Figure 6.11 illustrates the same learning process with the application of data set II. The rewards for the
buying process were not improved (Figure 6.11a) and the actions were adjusted towards limit levels deep in
the order book (Figure 6.11b). The backtest resulted in an average reward of -3.56, slightly worse than the
expected market return of -1.06.

Rewards for selling increased during the training, as shown in Figure 6.11c and the chosen average action
remained just above -40 after 1000 epochs, as shown in Figure 6.11d. The average reward after the backtest
was 0.15, which is an improvement on the expected market order return of -1.72.

Table 6.4 summarizes the average rewards received for the DQN agent that makes use of Feature II and con-
siders the 25 trades immediately prior to each of the 1000 epochs backtested. As with the previous application
of Feature I to the agent, significant optimization could be achieved when market conditions became more
favorable to buying or selling. The application of Feature II meant that the agent was able to outperform the
DQN agent with Feature I when it comes to buying when the market price is falling. A slightly worse perfor-
mance resulted when attempting to sell and the market price was rising. Nevertheless, the reward obtained
was much better than the expected market order return. However, when the market conditions came not in
favor of the intention to either buy or sell, the agent performed equal to the DQN under application of Feature

50 6. Evaluation procedure and discussion of results

I.

DQN (Feature II)
E[Market
Order]

Buy (I) 31.92 -0.05
Sell (I) -25.15 -27.70
Buy (II) -3.56 -1.06
Sell (II) 0.15 -1.72

Table 6.4: Summary of rewards during backtest of DQN agent using Feature II (historical trades).

6.6. Determining the limitations of the DQN agent

This section aims to determine the capabilities and limitations of the DQN agent with the use of Feature I
in greater detail. Sample order submissions are investigated which uncover the actions chosen by an agent
throughout one epoch. Therefore, we will be able to see which market situations prevented the agent from
achieving a positive reward and conclude why the agent was not able to choose the most ppropriate actions.
In addition, artificial order books are being created which serve as new data sets to train and test the DQN
agent on. By doing so, we aim to determine the capabilities of the deep reinforcement learning technique
under market conditions which are 1) not affected by short term fluctuations and 2) a hold constant spread
between best bid and best ask is given.

6.6.1. Limitation arising from market situations or inappropriate actions from the agent

Extensive investigations have shown that the DQN agent fails to place orders that lead to constant positive
rewards due to the following two reasons: 1) when the market situation does not allow to do so and 2) when
the agent submits an inappropriate action.

Our investigations have shown that for the first category, not just upwards and downwards trends arise
difficulties for the order placement to result in a positive reward, but also when the spread between the best
bid and best ask price becomes large. Examples of wide spread scenarios are shown in Figures 6.12 and 6.13,
where an agent attempted the placement of a buy and sell order respectively.

Figure 6.12: Wide spread between bid and ask prevents agent from buying.

6.6. Determining the limitations of the DQN agent 51

Figure 6.13: Wide spread between bid and ask prevents agent from selling.

Prior to the start of the buy order placement, the spread was very close between the best bid and best
ask price, as indicated by the green and red lines. However, during the placement of this order, the spread
widened and remained almost for the entire time horizon larger than $50.00. Since the actions are segmented
in discrete steps of ∆a = 0.10, with a total of 101 steps, reaching from -$5.00 to +$5.00 relative to the market
price, the agent had no chance of placing the orders close to the best ask price. As a result, the entire inventory
of 1.0 BTC bought by using a market order at the end of the time horizon (a trade is marked with a cross). This
generated a negative reward of -8.08. The same market situation is demonstrated during which the agent
initiated the process of placing a sell order. Similarly, the pricing level was almost never close to the best bid
price, except for once. As a result, a market order was followed with which the agent sold the remaining 0.9
BTC to a decreased price that resulted in a negative reward of -47.28. In addition, since there was not much
liquidity offered by buyers, the market order was partially filled at decreasing price levels, as indicated by the
crosses in the figure. A way to overcome this limitation would be to either increase the number of steps or to
increase the action step size and will be addressed in Chapter 7.

Figure 6.14: Wide spread between bid and ask prevents agent from selling.

An example of the seconds category, where the agent clearly failed to select an appropriate action, is
shown in Figure 6.14. As is illustrated, the market price and the best bid and ask price were declining before
the initialization of the sell order placement. The agent then decided to cross the spread with the first step
and choose the action 28, in which it was willing to sell for $2.80 below the market price. By doing this, the
order was immediately filled and resulted in a negative reward of -1.71. Ideally, the agent should have been

52 6. Evaluation procedure and discussion of results

patient and decide to place a limit order below the spread. Then, in a subsequent step, the order could have
been filled with a negative action, which would have resulted in a positive reward. It is to be assumed that the
agent failed to generalize the development of the order book with the provided feature set. Instead, the agent
reacted according to the previous declining market situation, in which it would have been indeed the better
choice to immediately fill the sell order.

6.6.2. Capabilities evaluated using artificial limit order books
Introducing an artificially created order book allows to determine the capabilities of a reinforcement learning
agent in greater detail. We define the formation of the order book states over time and therefore can calculate
the optimal order placement policy in advance. In doing this, we can investigate whether or not an agent is
able to find the optimal placement policy. In addition, by constructing such artificial order books, we are able
to remove any short term market fluctuations and therefore provide more consistent rewards to the agent
during training. Figure 6.15 below shows the setup of two such order books. Both consist of 10 minutes worth
of data with order book states changing every 1 second, resulting in a total of 600 data points that represent
the order book states. Every such order book state consists of 25 levels on both the bid and ask side with a
deviation of $0.10 for each level, as shown in the zoomed panes. In addition, on every such level 1.0 BTC is
listed on the bid and ask side, which ensures that an agent can fill the entire order with any chosen limit level.
The change of the order book states is then determined by a function.

(a) Linear configuration of order book states with slope
a =−0.1

(b) Order book states configured according to sine
function with f = 10

Figure 6.15: Artificial order books with duration of 10 minutes

The first example, as shown in Figure 6.15a, is a linear function which defines the market price to start
at $10’000 and end at $9’940. The price therefore falls by $0.1 with every second. An agent should therefore
realize that for buying the actions chosen should be negative (a < 0) for each step such that a trade transacts
at the end of the time horizon to a much lower price. The invariable reward after 100 seconds by choosing a
random state to start the order placement, should therefore be $10.0. Contrarily, the agent should realize that
the loss, when selling, can be minimized by selecting a very positive action that results in an immediate sale.
The invariable reward should therefore be -$0.10.

The second example, as shown in Figure 6.15b, applies a sine function over the order book states. The
frequency was set to 10 such that within one minute at least one complete sine wave is generated with the
amplitudes peaking at $10’010.0 and $9’990.0 respectively. An agent is expected to learn to place limit orders
according to the low and high peak for buy and sell orders respectively. The average reward for this example
will not serve as an adequate measure since depending on which state the agent starts (e.g. at which point in
the amplitude) the optimal rewards can be different. Instead, we rely on the volume weighted average price
directly and therefore expect the agent to buy close to $9’990.0 and sell close to $10’010.0.

Both artificial order book constellations, in form of feature type I, were trained and tested with the DQN
agent. The configuration of the agent was chosen equivalent to the setup described in Section 6.5 and a total
of 5000 epochs were proceeded for training and 1000 epochs for testing. For the first example, that shows
a clear downwards trend, the average reward during the backtest of buying assets resulted in $9.45 and for

6.7. Conclusion of the evaluation 53

selling in $-0.10. These results indicate that the agent was indeed able to find a near-optimal policy. For the
second example, that shows the multivariate sine wave that represents the order book, the average volume
weighted average price for buying was $9’992.0 and for selling $10’007.0. This indicates that the agent was
able to improve to an near-optimal policy with regards to the fluctuating but stationary development of the
order book.

6.7. Conclusion of the evaluation
With the evaluation procedure introduced and undergone in this chapter it was shown that reinforcement
learning techniques are indeed suitable for optimizing limit order placement for cryptocurrency markets.
The findings are shown in Table 6.5 First, we empirically estimated the potential improvements that can be
achieved by placing orders with the the most optimal limit level compared to an immediate sale or purchase
using a market order. It has been shown that when the development of the market price comes in favor of the
to limit order placement, namely when the price is falling while buying or when the price is rising while buy-
ing, then the reward for the optimal limit order is expected to be significantly higher. In situations where the
market price does not come in favor, then no improvement can be achieved and the optimal limit level is to
cross the spread which declares the order to become a market order that fulfills the demand to buy or sell im-
mediately. Subsequently, the Q-Learning agent was trained and tested without the knowledge of market data
but with private variables (inventory and time horizon) only. The average rewards achieved during a backtest
have shown that this agent was not able to take advantage of market price movements that come in favour
of the order placement process. However, the agent was able to reduce the costs when the market price de-
velopment does not come in favor of either buying or selling assets. In fact, the Q-Learning agent performed
best among all considered agents, when it comes to reducing the occurrence of unavoidable losses. Subse-
quently, the DQN agent was evaluated under the independent application of two feature sets. It has been
shown that the application of feature II (a sequence of historical trades) allows for a slightly better estimation
of choosing actions for the limit order placement than the application of feature I (a window of historical
order book states). Although the DQN was able to learn a policy that allows to optimize the order placement
when market conditions come in favor of buying or selling, the agent performed worse than the expected
market order when conditions were not ideal. In order to understand why no policy could be learned that
would allow to constantly result in rewards better than the ones expected by using a market order, the actions
taken by the DQN agent were analyzed. It has been shown that 1) a wide spread between the best bid and ask
price and 2) over-fitting on the given market features prevented the agent from choosing actions which would
fill an order to a price better than the market price. Furthermore, artificially created order books were created
and features derived therefrom. It was shown that in such a setting, where short term market fluctuations are
absent and liquidity on the buyer and seller side is constantly provided, a deep reinforcement learning agent
is able to find a near-optimal placement policy.

Table 6.5: Summary of expected and achieved average rewards from empirical evaluations and reinforcement learning applications.

E[Market
Order]

E[Limit order]
(optimal)

Q-Learning
DQN

(Feature I)
DQN

(Feature II)
Buy (I) -0.05 15.20 -1.17 22.06 31.92
Sell (I) -27.70 -27.70 -21.34 -39.26 -25.15
Buy (II) -1.06 -1.06 -1.04 -2.26 -3.56
Sell (II) -1.72 3.38 -4.74 -0.84 0.15

7
General conclusions and discussion

This thesis serves to determine how deep reinforcement learning can be used to optimize the limit order
placement problem. Over the course of working on this project it has been understood that, in order to
propose a solution to this problem, concepts from the financial as well as the machine learning context are
required to be understood and developed. Therefore, this thesis was structured in a way in which each chap-
ter contributes constructively and in part towards the translation of the order placement problem into the
reinforcement learning context and finally allows to pursue experiments which state the effectiveness of our
setup. The required components involved were introduced in Chapter 2; the data, including the features
constructed therefrom, were elaborated in Chapter 4. In Chapter 5 a reinforcement learning environment
and two implementations of agents were developed, by which inspiration and knowledge was acquired from
the related work presented in Chapter 3. Ultimately, the setup was evaluated in Chapter 6 and the found
results show that the DQN agent was able to outperform the expected volume weighted average price for
market orders by $14.18 for buying 1.0 BTC within a time horizon of 100 seconds. However, the agent failed
to outperform a market order by $15.0 for selling 1.0 BTC within the equivalent time horizon.

This chapter discusses and revisits the research questions with respect to the corresponding contribu-
tions made and thereby mentions strengths and limitations of this work. Furthermore, a summary of the
contributions made is provided. Finally, future work is suggested and a motivation is stated which supports
the application of the techniques developed to be used in real world practices.

7.1. Findings with regard to the research questions
In Chapter 1 (Section 1.2) the purpose of this thesis was carried out by stating the research objectives. This
section aims to revisit these research questions, conclude what has been achieved in their regards, and dis-
cuss these findings in greater detail.

7.1.1. RQ 1.1: Which historical market data patterns drive market participants to buy
or sell assets, and how can these patterns be incorporated into features used by a
deep reinforcement learning agent?

Historical market event data was investigated in Chapter 4. Thereby, patterns were found which give insight
into how market participants positioned their orders, with respect to price and size. It was shown that the
price movement was likely to be due to (1) an imbalance between bid and ask orders; (2) a distinctive way of
posting or canceling orders; and (3) consecutive or impulsive trades. Furthermore, hypotheses were formed
based on these findings and two features were constructed which incorporate emerging data that was foun-
dation for the patterns found. Namely, a window of historical limit order book states (feature I) and historical
trade events (feature II).

The first attempt to find patterns in market data was made by investigating the relationship between trade
activity (volume) and price change and volatility, as proposed by Karpoff et al. [25]. As traders submit limit
orders to buy (sell), they impact the bid (ask) volumes of the limit order book and thereby gives us a view of
the traders’ intentions and would allow to foresee the direction of the upcoming price changes. To quantify
this intent, we looked at the difference between the bid and ask volume, called order imbalance, as shown

55

56 7. General conclusions and discussion

in Section 4.3.2. Even though imbalance was clearly present, the high volatility in the Bitcoin/USD market
prevented us from finding obvious correlation to the direction of future price movements. This gave rea-
sons to believe that the data had to be investigated on the raw market event level[24]. The visualization of
market events occurred over time, in a volume map, allowed to detect and associate patterns to future price
changes (Section 4.3.3). It was found that orders submitted and cancelled, as well as the trades generated,
had an impact on the future price movement. However, in order to determine whether or not this informa-
tion is beneficial regarding the optimization of limit order placement, a feature had to be constructed with
which an agent can attempt to learn a policy. Hand-crafting features such as measuring the change in volume
would have excluded important information regarding the price level and frequency of the orders posted.
Recent advances in deep reinforcement learning have demonstrated the ability to learn directly from pixel
frames[29] and raw sensory data[30] occurred over time. We followed the same principles and constructed
features which reflect (1) the order book states and (2) the trades that have occurred over time. As a result,
the constructed features will contain the entire information and as soon as a new market event is published
a new sample can be added to the feature set. One of the difficulties with these constructed features was to
determine with appropriate size of the data window to be considered. Entropy and correlation of order prices
and sizes suggests that at least a window of 30 order book states should be considered. While this being no
guaranteed for optimal performance, we tested window sizes up to 60 states and found no improvements
during a backtest.

7.1.2. RQ 1.2: How should one design a reinforcement learning environment and agents,
in the context of order placement?

The challenging task of mapping the order placement problem into the reinforcement learning context de-
manded an investigation of components involved in the financial setting as well as in a reinforcement learn-
ing setting and was described in Chapter 2. In Chapter 5, these components were combined and a reinforce-
ment learning environment was built. The environment built configures a discrete action space with which
an agent can explore the state space that is determined by the underlying historical market data. The re-
ward function in use represents the outcome of the matching process of an order submitted. Since most of
the capabilities were made available within the environment, the required complexity of the agents could
be reduced drastically. Two agents where developed with the purposes of learning with and without market
features.

The key components which ultimately enabled to build a reinforcement learning environment that emu-
lates a local broker and therefore allows to simulate limit order placement using historical orders book, are,
the order book (Section 2.1) and the match engine (Section 2.2). The difficulties that arose during the de-
velopment of these components are related to performance and inevitable approximations required during
the matching process. The vast amount of market events led the matching process to be become unbearably
slow. Improvements were made by using caching and indexing mechanisms but it remains as a limitation of
this project and ultimately limited the scope of the evaluation that was proceeded (the run-time for an agent
to train over 5000 epochs took more than 4 hours). Undoubtedly, improvements could be done by using tech-
niques such as proposed in [15]. However, this was out of scope in this project as the focus was laid to the
general principle of how to map the order placement problem into the reinforcement learning context, rather
than building an efficient matching engine. A more serious limitation when matching orders using histori-
cal order books is the absence of market participants, who could have 1) entered or 2) left the market upon
placing an order during the simulation. Participants who would enter the market would likely be favorable
to us as they would act as potential buyers and sellers and therefore provide liquidity. Participants who leave
the market would introduce a slight disadvantage as there would be less liquidity. Therefore the matching
process is strictly speaking an estimation of what would have happened in the past. However, since only up
to 1.0 BTC were used for buying and selling, which is insignificant in terms of having a market impact[22],
we considered the approximation of the matching process as sufficiently correct. Otherwise, the only way to
overcome this limitation would be to train and test on live market data and therefore make real purchases
and sales.

The environment built in this work confirms that reinforcement learning is a suitable for the optimization
of the limit order placement problem. The end-to-end learning process, which is known to be successful
in other domains[14, 29, 30], allowed us to regard the underlying order matching process as a black-box.
This in turn allowed the environment itself to be kept relatively simple. Moreover, with our setup the agent
can improve its policy with the use of a reward function whose outcome is the volume weighted average

7.1. Findings with regard to the research questions 57

price that is directly determined by the outcome of the matching process. Furthermore, the environment
does not only support the use of multiple agents in a standardized way but also allowed us to estimate the
expected rewards for certain actions taken by the agent. The fact that the limit order placement process is
non-trivial and can be attempted in many ways, we were required to equip the environment with a variety
of configuration parameters, as defined in Section 5.1.2. While this provides the ability to define evaluation
setups very precisely, it also introduces the inevitable obligation to limit the scope of how the problem is
attempted to be optimized. We have decided to define the discrete time step size ∆t = 10second s, which
represents the duration of how long an order remains in the order book for each step taken by the agent
and therefore limits the number of steps to be taken throughout one epoch to H

∆t = 10. With the empirical
investigation (Section 6.3) we have shown that a placement of 10 seconds diverges from the expected rewards
received for placing the order for a total of 100 seconds. Naturally, if the agent decides for each step to choose
the same action, the result is equivalent to a placement over 100 seconds. Therefore, the benefit of the time
step parameter is the agents ability to intercept and change the action accordingly, in case a sudden change in
the market data suggests to place the order at a difference price level. Investigations were made with time step
parameters smaller than 10 seconds (3s, 5s) and no improvements could be made. The only difference was
an increased training time as the agent had more steps to take for one epoch. Another important parameter
is the size of the action space, which we defined to be consisting of 50 negative and 50 positive actions that
result in a total action space size of |A| = 101. The empirical investigation in Section 6.3 has confirmed that
this is indeed the range of actions which have most influence in the posting of order over a time horizon of 100
seconds. However, the limitations found in Section 6.6 have shown that there are rare occasions where the
defined action space is too small and therefore the agent is unable to place the order at a price level close to
the offers of potential buyers or sellers. Increasing the already rather large action space would certainly allow
the agent to place orders at the appropriate price levels. However, experiments with |A| = 201 have shown that
this comes with the cost of increased training required as well as a greater potential for misplacing orders, and
therefore performance could not be improved. Alternatively, the action step size, which is currently $0.10,
would allow to increase the price range at which to place orders by maintaining equal action space size.
However, this implies that the agent would make more coarse decisions in terms of the price level at which
to place the order and therefore potential optimal placements would be out of reach. Our investigations have
shown that no improvements could be made with ∆a = $0.50 and ∆a = $1.00.

The Q-Learning and DQN agents developed are similar in terms of the reward function in use that under-
lies the principles of the Bellman equation (Eq. 5.1). However, much complexity is added to the DQN agent,
such as the use of an experience replay and most importantly the use of a neural network that serves as value
function approximator. While the Q-Learning agent can be suitable when no market variables, or an approx-
imation thereof, are applied, it was found not to be an appropriate choice for the purpose of optimizing the
limit order placement problem in general. Market features, such as the ones constructed in Chapter 4, would
not provide any benefit when being applied to the Q-Learning agent. Reason for this is that Q-Learning makes
use of a look-up table which records a combination of all visited observation states and chosen actions. Since
the observation states are derived from market data at a given point in time, most observations states be-
come unique and thus learning time is expected to scale exponentially with the size of the state space[40].
To overcome this limitation, market features would have to be approximated drastically, as demonstrated in
[32]. Contrarily, and for reasons stated above, the DQN proofed to be a suitable in this regard. We briefly in-
vestigated the architecture of the neural network briefly, including the experimentation with long short-term
memory[20] as well as a 2-layer perceptron. Our investigations have shown that the CNN architecture pro-
posed in [30] performed best and was chosen for further evaluations in Chapter 6. Clearly, there is room for
improvements with regard to parameter tuning, which we neglected in this work due to the prioritization of
the architectural aspects of the reinforcement learning setup and therefore suggest this as future work.

7.1.3. RQ 1.3: How can one evaluate a reinforcement learning agent in the context of or-
der placement?

The fact that previous research has not yet been applied to the cryptocurrency market and therefore no op-
timization performance figures exist, to which the approach of this work can be compared to, an evaluation
procedure was worked out as part of this thesis (Section 6.1). Therefore, two real world market data sets were
chosen as well as artificially generated limit order books. The multi-step procedure involved an empirical
investigation of the expected costs of an optimally placed limit order as well as the costs of an immediate
purchase or sale using a market order. Furthermore, the expected costs were taken as a benchmark for the
Q-Learning agent as well as the DQN agent under the application of both aforementioned feature types. In

58 7. General conclusions and discussion

addition, an evaluation mechanism was built into the reinforcement learning environment which allows to
investigate the steps taken by an agent while proceeding a training or testing epoch. This allowed to detect
the limitations of the agent as well as the environment in greater detail.

The way in which order placement was simulated is heavily based on suggestions made regarding backtesting
by Pedro et al. [17]. Particularly, the selection of random order book state that serves as the starting point of
an epoch the agent initializes drastically reduces the chances for possible over-fitting. With this in mind, we
considered data sets which show different market price constellations and furthermore developed a way to
create artificial order books to train and test the agent on. It is obvious that only by considering an infinite
amount of data sets a completely generalized statement about the optimization capabilities can be made,
however, and as mentioned earlier, this comes at the cost of time and computational resources. However,
our novel approach to generate artificial data sets has proven to be of substantial value since the possible
optimization factor is known prior the validation of the model and processing is much faster.

The empirical investigation step executed prior the training of a policy has provided baseline performance
results. The expected costs for market and limit orders where determined and the results have shown that
the expected behaviour for limit order placement is similar to what was proposed by Kearns et al. [31] who
worked with traditional stocks. However, we have shown more detailes of the behaviour with respect to the
given time horizon for the placements of orders. The authors of [31] stated that, overall, the optimal price at
which to place an order is just below the spread price. This statement is true for the cryptocurrency market
as well, however, only under the condition that the time horizon is chosen either very small (H ≤ 10second s)
or rather large (H > 15mi nutes). Otherwise, for example when H = 100second s, we have demonstrated
that the optimal price at which to place an order changes drastically depending on the fluctuations of the
market price. Namely, for buying, limit orders should be placed deep in the order book when market prices
are falling, and high in the book when the price is rising. Contrarily, for selling, orders should be place high
in the book when the market price is falling and low in the book when the price is rising. These insights not
only provided knowledge of how to optimize the placement of orders but also generated means to compare
the performance achieved by reinforcement learning agents.

We further reflect that average rewards provided much more understanding about the performance of
the reinforcement learners, as opposed to the additionally derived average actions chosen. An average ac-
tion, consisting of up to 10 values (equivalent to the maximum number of steps for one epoch) from the
range of 101 total actions, certainly provides knowledge about the tendency at which price level the learners
attempts to place orders. However, an observation and the analysis of the specific sequence of actions chosen
is suggested to be derived in future work.

7.1.4. RQ 1.4: In which way do the previously constructed features enable a reinforce-
ment learning agent to improve the way it places orders?

The aforementioned evaluation procedure was used to determine the efficiency of the constructed features
applied to the DQN agent. Results stated in Chapter 6 have shown that, with the use of either of the two fea-
tures, a policy can be learned that allows to optimize the order placement when market conditions came in
favor of making a purchase or sale. However, under the application of either of the two features, the agent
performed worse than the expected costs of a market order when conditions were not ideal. Moreover, it has
been shown that the application of feature II (a sequence of historical trades) results in an overall better pol-
icy than the application of feature I (a window of historical order book states).

First, reinforcement learning without market features was tested by using the adapted Q-learning algorithm
presented in Section 5.2. The similar approach presented by Kearns et al. [32], and tested on traditional
stocks, achieved an optimization in the ranges of 27.16% to 35.5% for sell limit orders placed. We back-tested,
on the cryptocurrency market Bitcoin/USD, both scenarios: buying and selling. Interestingly, we achieved
similar performance with the Q-Learner, when the market price moved against our favor while attempting
to make a sale. That is, $-27.70 was the expected return for selling 1.0 BTC and the agent reduced the return
to $-21.34, e.g. an improvement of 22.96%. The agent was unable to outperform the expected market order
costs of $-1.72 and loss of $-4.74 was generated. For the process of buying, the return improved from $-1.06
expected to $-1.04, when the market price was rising and no improvements were achieved when the price
moved against our favor–$-1.17 compared to $-0.05 expected. In general, it can be said that the performance
of the Q-learner is relatively close to the costs of a market order, with the one exception where it was signifi-
cantly more profitable. That implies that the absence of market variables has the effect that the agent is able

7.2. Recommendations and future work 59

to learn the general principles at which price level to submit orders, however is not able to perform better than
a market order. The results found for the DQN agent were unlike the ones for the Q-Learning agent. For both
market features, the agent was able to improve when market prices allowed, but failed otherwise. Hence, the
agent learned that rewards are only high for prices below the spread with a < 0 but was unable to avoid the
risk that comes with it. The result of which was that the agent optimized purchases, while the market price
was falling, from $-0.05 expected to $22.06 (feature I) and $31.92 (feature II). A moderate improvement, while
making a purchase, was made with feature II: $-25.15 compared to the expected $27.70, and performed worse
under the application of feature I, that is $-39.24. For the scenario of rising market prices, where the expected
market costs were -1.06, no improvements were made for buying: $-2.26 (feature I) and $-3.56 (feature II).
The improvements made for selling were $-0.84 (feature I) and $0.15 (feature II) with expected market reward
of $-1.72, that is a smaller improvement than the scenario of buying under the falling market price.

By considering the artificial data sets with linear and sine functions applied, near-optimal performance
was achieved with the DQN agent and feature type I (window of historical order book states). This confirms
that 1) reinforcement learning is indeed capable of optimizing the limit order placement but 2) that there is
potential to further improve the setup for real-world market data sets. Moreover, the increased optimization
capability on a sine shaped order book, compared to the real world market data, indicates that the learner
had much difficulty to find a policy under non-stationary conditions and the C parameter (see Section 5.3)
was only of minor assistance. Furthermore, it is to be assumed that by 1) increasing the data sets and train-
ing epochs as well as 2) increasing the action space in order to consider even more actions to be taken for
each step within an epoch, would increase the performance. However, this would require significantly more
computational resources and time than what was available for this work. Likewise, we expect a performance
increase when tuning the hyper parameters of the DQN agent with a systematic grid search. In addition,
during the evaluation of the limitation of the DQN agent we have found that performance is likely to be im-
proved by 1) enlarging the window size of the feature provided to the agent in order to cover long term market
movements and 2) by increasing the training epochs in order to make the agent more aware of such pitfalls.

7.2. Recommendations and future work
First and foremost it is recommended to proceed simulations of limit order placement with the setup pro-
vided in this work on a live market and therefore make actual sales and purchases. Thereby, it would be
interesting to determine to which extend market participants that approach or leave the market, upon the
placement of an order, affect the results found in this work. By doing so, market fees could be considered and
integrated into the reward function provided, followed by an observation in order to determine whether or
not the agent adjusts the actions such that market orders, that come with the more expensive taker fees, are
less often chosen.

An alternative to the live market evaluation would be to make use of an entire artificial market such as
proposed by Raberto et al. [35]. Such a setup would demand multiple agents to continuously post buy and
sell orders. By doing so, some of the agents could act as naive traders and other could make use of the learning
capabilities provided in this work. It would then be interesting to see which category of agents would achieve
an overall better performance.

Furthermore, some limitations where discovered in this work and were declared as to be investigated in
the future. This includes the extension of the evaluation procedure in which a the sequence of actions chosen
by an agent should be investigated. The aim of which is to understand what an agent makes to choose for a
certain action over another. Additionally, the model presented and used in the DQN agent provides hyper-
parameters which are determined to be further optimized. A systematic grid search under the application of
high computational resources would therefore provide insights whether or not the problem can be further
optimized.

In addition, this work could be extended to be a hybrid approach, with the use of imitation learning. A
statistical framework such as proposed in [41] (see Section 3.2) would act as the expert agent, from which an
initial policy is learned. Subsequently, the given deep reinforcement learning mechanisms can be used to
learn patterns from the market data that come in favour of the limit order placement. Thereby, we suggest
to update the policy only if the rewards are either significantly positive or negative, in order to prevent from
learning noise.

Lastly, the setup built in this work can be used not only to learn order placement but also to learn a market
making[33] strategy. That is, when buy and sell orders are placed simultaneously with the incentive to make
a profit from the difference of the price paid for the buy order and the price received for the sell order.

60 7. General conclusions and discussion

7.3. Summary of contributions
This work aims to take a step towards answering the important question of how one can optimize the limit
order placement on cryptocurrency exchanges using deep reinforcement learning. Previous work in this field,
by Kearns et al., who have studied the behavior of order placement and order execution[31] and developed
a reinforcement learning strategy[32] for the purposes of optimization on traditional exchanges, has been
extended and applied to the cryptocurrency field.

In this work, raw market data of the Bitcoin/US-Dollar trading pair was analyzed with regard to the activity
of market participants. We have found that patterns emerge while traders create and cancel orders in financial
markets. Based on these findings, two features where designed which incorporate the found patterns in form
of a window of 1) historical order book states and 2) historical trades, respectively. Furthermore, a limit order
book data structure as well as a simplified match engine, that enables to emulate a local broker and can
match orders using the historical order book, were developed. Those mechanisms were incorporated into a
reinforcement learning environment which allows to make the translation of the order placement problem
into the reinforcement learning context. The environment is configurable and therefore flexible enough to
enable investigations with the previously constructed features as well a variety of agents. In addition, two
implementations of reinforcement learning agents were developed: a Q-Learning agent serves as the learner
when no market variables are provided and a Deep Q-Network agent is developed to handle the features
previously mentioned.

Prior the experimentation with the environment and agents developed, a comprehensive evaluation pro-
cedure was worked out as part of this work. The multi-step procedure involved an empirical investigation
of the expected costs of limit and market orders and serves a benchmark for the Q-Learning agent as well as
the DQN agent. The results have shown that the Q-Learning agent was not able to take advantage of market
price movements that came in favour of the order placement process. Nevertheless, the Q-Learner was able
to reduce the costs when the market price development did not come in favor of either buying or selling as-
sets and outperformed all considered agent setups, in such a scenario. The DQN agent, on the other hand,
was able to learn a policy that allows to optimize the order placement when market conditions came in favor
of making a purchase or sale. However, this agent performed worse than the expected costs of a market order
when conditions were not ideal. Furthermore, its has been shown that the agent is capable of finding a near-
optimal policy on artificial market data, and therefore implies that non-stationary as well as noisy market
data prevents the agent from achieving similar results.

This thesis concludes that there is indeed a way in which deep reinforcement learning is capable of op-
timizing the limit order placement problem. However, under the application of real world market data, the
agent can be exposed to severe conditions, in form of wide spreads or absence of liquidity, which prevent
the agent from applying an optimal policy. Therefore, and in order to constantly be able to perform better or
equal placements than what is offered at the financial market, at any given time, the approaches presented
in this work have to be further improved and extended.

7.4. Application in real world practices
This work involved a pipeline of tasks, each of which contributed in partly towards answering research ques-
tions stated in this thesis. The tools and components developed throughout this process were thereby consec-
utively extended and merged. The result of which is a ready-to-use product, in form of a flexible framework,
that allows to implement an intelligent order placement strategy according to the historical or live market
data provided by the end user. The configuration parameters of the environment and agent provided allow
to make further adjustments according to the users specific needs. Moreover, our approach is not limited
to cryptocurrency markets but instead supports any product that is traded with limit order books, as long
as data is provided. This in turn makes our setup attractive for numerous of real world practices. Financial
exchanges could use this framework in order to provide a new order type, which allows their customers to buy
or sell an inventory I of the asset within a time horizon of H seconds. Moreover, this setup is not restricted
to centralized exchanges but instead can also be applied to decentralized exchanges where each node of the
exchange would feature its independent agent that learns from the corresponding order book residing in that
node. Another target group of this framework are (institutional) traders or brokers which intend to optimize
the way to place orders at the exchanges of their choice. Therefore, data of the exchange serves as the source
of the reinforcement learning environment. The agents task is then to act as an intermediary between the
trader and exchange.

Bibliography

[1] Bottom-up investing. URL https://www.investopedia.com/terms/b/bottomupinvesting.asp.
[Online; accessed April 30, 2018].

[2] Convolutional neural networks (cnns / convnets). URL http://cs231n.github.io/
convolutional-networks. [Online; accessed April 30, 2018].

[3] Cs 294: Deep reinforcement learning. URL http://rll.berkeley.edu/deeprlcourse/. [Online;
accessed April 30, 2018].

[4] Fundamental analysis. URL https://www.investopedia.com/terms/f/fundamentalanalysis.
asp. [Online; accessed April 30, 2018].

[5] Matching algorithms. URL https://www.cmegroup.com/confluence/display/EPICSANDBOX/
Matching+Algorithms. [Online; accessed April 30, 2018].

[6] Enrique martinez miranda. URL https://nms.kcl.ac.uk/rll/enrique-miranda/index.html.
[Online; accessed April 30, 2018].

[7] Deep reinforcement learning demysitifed (episode 2), . URL https:
//medium.com/@m.alzantot/deep-reinforcement-learning-demysitifed\
-episode-2-policy-iteration-value-iteration-and-q-978f9e89ddaa. [Online; accessed
April 30, 2018].

[8] Reinforcement learning demystified, . URL https://towardsdatascience.com/
reinforcement-learning-demystified-36c39c11ec14. [Online; accessed April 30, 2018].

[9] Limit orders, . URL https://www.sec.gov/fast-answers/answerslimithtm.html. [Online; ac-
cessed April 30, 2018].

[10] Market order, . URL https://www.investor.gov/additional-resources/general-resources/
glossary/market-order. [Online; accessed April 30, 2018].

[11] Stock exchange history. URL https://www.investopedia.com/articles/07/
stock-exchange-history.asp. [Online; accessed April 30, 2018].

[12] Top-down investing. URL https://www.investopedia.com/terms/t/topdowninvesting.asp.
[Online; accessed April 30, 2018].

[13] Technical analysis. URL https://www.investopedia.com/terms/f/technicalanalysis.asp. [On-
line; accessed April 30, 2018].

[14] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech
recognition in english and mandarin. In International Conference on Machine Learning, pages 173–182,
2016.

[15] Raphaël P Barazzutti, Yaroslav Hayduk, Pascal Felber, and Etienne Rivière. Exploiting concurrency in
domain-specific data structures: A concurrent order book and workload generator for online trading. In
International Conference on Networked Systems, pages 16–31. Springer, 2016.

[16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Woj-
ciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[17] Marcos Lopez de Prado. Advances in financial machine learning. John Wiley & Sons, 2018.

61

https://www.investopedia.com/terms/b/bottomupinvesting.asp
http://cs231n.github.io/convolutional-networks
http://cs231n.github.io/convolutional-networks
http://rll.berkeley.edu/deeprlcourse/
https://www.investopedia.com/terms/f/fundamentalanalysis.asp
https://www.investopedia.com/terms/f/fundamentalanalysis.asp
https://www.cmegroup.com/confluence/display/EPICSANDBOX/Matching+Algorithms
https://www.cmegroup.com/confluence/display/EPICSANDBOX/Matching+Algorithms
https://nms.kcl.ac.uk/rll/enrique-miranda/index.html
https://medium.com/@m.alzantot/deep-reinforcement-learning-demysitifed\-episode-2-policy-iteration-value-iteration-and-q-978f9e89ddaa
https://medium.com/@m.alzantot/deep-reinforcement-learning-demysitifed\-episode-2-policy-iteration-value-iteration-and-q-978f9e89ddaa
https://medium.com/@m.alzantot/deep-reinforcement-learning-demysitifed\-episode-2-policy-iteration-value-iteration-and-q-978f9e89ddaa
https://towardsdatascience.com/reinforcement-learning-demystified-36c39c11ec14
https://towardsdatascience.com/reinforcement-learning-demystified-36c39c11ec14
https://www.sec.gov/fast-answers/answerslimithtm.html
https://www.investor.gov/additional-resources/general-resources/glossary/market-order
https://www.investor.gov/additional-resources/general-resources/glossary/market-order
https://www.investopedia.com/articles/07/stock-exchange-history.asp
https://www.investopedia.com/articles/07/stock-exchange-history.asp
https://www.investopedia.com/terms/t/topdowninvesting.asp
https://www.investopedia.com/terms/f/technicalanalysis.asp

62 Bibliography

[18] Tristan Fletcher, Zakria Hussain, and John Shawe-Taylor. Multiple kernel learning on the limit order
book. In Proceedings of the First Workshop on Applications of Pattern Analysis, pages 167–174, 2010.

[19] Chris Gaskett et al. Q-learning for robot control. 2002.

[20] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with
lstm. 1999.

[21] Xin Guo, Adrien de Larrard, and Zhao Ruan. Optimal placement in a limit order book. Preprint, 2013.

[22] Nikolaus Hautsch and Ruihong Huang. The market impact of a limit order. Journal of Economic Dynam-
ics and Control, 36(4):501–522, 2012.

[23] Ted Hwang, Samuel Norris, Hang Su, Zhaoming Wu, and Yiding Zhao. Deep reinforcement learning for
pairs trading.

[24] David Kane, Andrew Liu, and Khanh Nguyen. Analyzing an electronic limit order book. The R Journal, 2
(64-68):1, 2011.

[25] Jonathan M Karpoff. The relation between price changes and trading volume: A survey. Journal of
Financial and quantitative Analysis, 22(1):109–126, 1987.

[26] Marcus Lim and Richard J Coggins. Optimal trade execution: an evolutionary approach. In Evolutionary
Computation, 2005. The 2005 IEEE Congress on, volume 2, pages 1045–1052. IEEE, 2005.

[27] David W Lu. Agent inspired trading using recurrent reinforcement learning and lstm neural networks.
arXiv preprint arXiv:1707.07338, 2017.

[28] Harry Markowitz. Portfolio selection. The journal of finance, 7(1):77–91, 1952.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529, 2015.

[31] Yuriy Nevmyvaka, Michael Kearns, M Papandreou, and Katia Sycara. Electronic trading in order-driven
markets: efficient execution. In E-Commerce Technology, 2005. CEC 2005. Seventh IEEE International
Conference on, pages 190–197. IEEE, 2005.

[32] Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for optimized trade execution.
In Proceedings of the 23rd international conference on Machine learning, pages 673–680. ACM, 2006.

[33] Maureen O’Hara and George S Oldfield. The microeconomics of market making. Journal of Financial
and Quantitative analysis, 21(4):361–376, 1986.

[34] Scott Patterson. Dark pools: The rise of AI trading machines and the looming threat to Wall Street. Ran-
dom House, 2012.

[35] Marco Raberto, Silvano Cincotti, Christian Dose, Sergio M Focardi, and Michele Marchesi. Price for-
mation in an artificial market: limit order book versus matching of supply and demand. In Nonlinear
Dynamics and Heterogeneous Interacting Agents, pages 305–315. Springer, 2005.

[36] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile Comput-
ing and Communications Review, 5(1):3–55, 2001.

[37] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[38] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to multi-layer feed-forward neural
networks. Chemometrics and intelligent laboratory systems, 39(1):43–62, 1997.

Bibliography 63

[39] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[40] Steven D Whitehead. Complexity and cooperation in q-learning. In Machine Learning Proceedings 1991,
pages 363–367. Elsevier, 1991.

[41] Chaiyakorn Yingsaeree. Algorithmic trading: Model of execution probability and order placement strat-
egy. PhD thesis, UCL (University College London), 2012.

	Introduction
	Context and Problem Statement
	Research objectives
	Document structure

	Preliminaries
	Order Book
	Orders
	Characteristics

	Match Engine
	Trade
	Interface
	Rules
	Limitations

	Order execution and placement
	Reinforcement Learning
	Advantages of end-to-end learning
	Markov Decision Process (MDP)
	Interaction
	Environment
	Agent
	Deep Reinforcement Learning

	Related Work
	Execution/Placement behaviour
	Statistical approach
	Supervised Learning approach
	Reinforcement Learning approach

	Market data curation and feature construction
	Collection of market events
	Reconstruction of an order book with market events
	Formulating hypotheses of the market behaviour
	Importance of order prices
	Importance of order volume
	Importance of volume of orders and trades over time
	Impact of traded price and volume

	Feature construction
	Feature: price and size of historical orders
	Feature: price and size of historical trades

	Conclusion

	Experimental reinforcement learning setup
	Order Placement Environment
	Overview of components
	Configuration parameters
	State
	Action
	Reward

	Q-Learning agent
	Deep Q-Network agent

	Evaluation procedure and discussion of results
	Explanation of the evaluation procedure
	Data sets and their usage in the reinforcement learning setup
	An empirical investigation of the reinforcement learning environment
	Order placement behavior on data set I
	Order placement behavior on data set II
	Conclusion of empirical analysis

	Q-Learning without market variables
	Results of training and testing on data sets I and II
	Conclusion of Q-Learning approach

	Deep Q-Network with market features
	Application of historical order feature
	Application of historical trade feature

	Determining the limitations of the DQN agent
	Limitation arising from market situations or inappropriate actions from the agent
	Capabilities evaluated using artificial limit order books

	Conclusion of the evaluation

	General conclusions and discussion
	Findings with regard to the research questions
	RQ 1.1: Which historical market data patterns drive market participants to buy or sell assets, and how can these patterns be incorporated into features used by a deep reinforcement learning agent?
	RQ 1.2: How should one design a reinforcement learning environment and agents, in the context of order placement?
	RQ 1.3: How can one evaluate a reinforcement learning agent in the context of order placement?
	RQ 1.4: In which way do the previously constructed features enable a reinforcement learning agent to improve the way it places orders?

	Recommendations and future work
	Summary of contributions
	Application in real world practices

	Bibliography

