First 5G deployment of Distributed Artificial
Intelligence

Orestis Kanaris
Delft University of Technology
Delft, Netherlands
0O.Kanaris @student.tudelft.nl

Abstract—
Index Terms—NAT, CGNAT, 5G, Distributed Machine Learn-
ing, Mobile Machine Learning

I. INTRODUCTION
II. PROBLEM DESCRIPTION
A. Background

In recent years, the proliferation of mobile devices has
reached unprecedented levels, with smartphones becoming an
integral part of everyday life. These devices have increas-
ingly powerful hardware, making them suitable candidates
for running complex machine-learning models [1], [2]. Ma-
chine learning on mobile devices holds excellent potential
for many applications, from personalized recommendations
to democratizing big tech. One can imagine a world where
every smartphone (or personal computer) holder holds their
own portion of "Google’s” database (and computation), having
all smartphones intercommunication and share information to
complete a search result, leading to a democratized distributed
peer-to-peer search engine, cleansed from the big tech influ-
ence and hidden agendas [3].

However, deploying machine learning models on mobile
devices presents numerous challenges, including limited com-
putational resources, memory constraints, and the need for
efficient communication between devices. The main struggle
this paper focuses on is connectivity between devices since the
communication in the context of this research will be handled
by the IPv8'. IPv8 is a networking layer which offers identities
and communication with some robustness and provides hooks
for higher layers.

Personal devices, specifically smartphones, communicate
through home Wi-Fi and mobile networks like 4/5G. Using
these networks, the devices usually end up behind a home
NAT or a Carrier-Grade NAT (CGNAT). The existence of
these NATs makes it harder for the devices to communicate
with each other since they lock their discoverability by hiding
the devices behind the NAT’s private network, forcing the
“NATed* device to initiate the connection first. This is not
a particularly impossible problem if one of the two peers has
a static IP address and is discoverable. It is particularly bad

Identify applicable funding agency here. If none, delete this.
Thttps://github.com/Tribler/py-ipv8

Johan Pouwelse (MSc Supervisor)
Delft University of Technology
Delft, Netherlands
J.A.Pouwelse @tudelft.nl

when both peers are behind NATs (even worse when it is
the same NAT, a problem common with CGNATs [4]), then
both need to initiate the connection first, but none of them is
“visible* to the other.

The STUN protocol (RFC3489 [5]) outlines four types of
NATs: Full-cone NAT, Restricted-cone NAT, Port-restricted
cone NAT, and Symmetric NAT. These categories are further
classified in RFC4787 [4] as “easy* NATs, which employ
Endpoint-Independent Mapping (EIM), and ‘“hard“ NATs,
which utilize Endpoint-Dependent Mapping (EDM). EIM en-
sures consistency in the external address and port pair if the
request originates from the same internal port.

As per V. Paulsamy et al. [6], the specifications for these
NAT types are as follows:

o Full-cone NAT: This EIM NAT maps all requests from
the same internal IP:Port pair to a corresponding public
IP:Port pair. Moreover, any internet host can communi-
cate with a LAN host by directing packets to the mapped
public IP address and port.

¢ Restricted-cone NAT: Similar to Full-cone NAT, this
EIM NAT maps an internal IP:Port pair to an external
[P:Port pair. However, communication from an internet
host to a machine behind the NAT is only allowed if
initiated by that machine.

o Port-restricted cone NAT: Also an EIM NAT, similar to
Restricted-cone NAT but with additional restrictions on
port numbers.

o Symmetric NAT: This EDM NAT maps requests from
the same internal IP:Port pair to a specific public IP:Port
pair. However, it considers the packet’s destination as
well. Consequently, requests from the same internal pair
but to different external hosts result in different mappings.

Symmetric NAT is the most “problematic* in the sense that
it is the hardest one to establish a connection with if both peers
are behind a NAT. Symmetric NATs behave very similar to a
hard firewall; that is, they only allow incoming packets from
a specific IP:Port pair only if an outgoing packet went to that
destination first. The reason that one might use a symmetric
NAT is when the administrator does not want to consume a
single IP address per user since they theoretically allow up
to 65535 simultaneous users. Symmetric NATs also give the
fallacy of security, as in being behind a firewall since they

https://github.com/Tribler/py-ipv8

never expose the user to the whole Internet, only to hosts
that the user specifically “opted-in“ to communicate with. The
reason for this need for security is that the Internet lacks any
security model. Anybody can freely send you an unlimited
amount of data, spam, and malware [7]. A Symmetric NAT,
to the average user, will not be an obstacle to their everyday
browsing, but it becomes a big problem with peer-to-peer
protocols, i.e. BitTorrent —In their 2008 study on fairness for
BitTorrent users, J.J.D. Mol et al. [8] discovered that peers
behind firewalls encounter greater challenges in achieving
equitable sharing ratios. Consequently, they advocated for
either puncturing NAT or employing static IP addresses to
enhance network performance.

B. Research problem

The central problem of this thesis revolves around the dis-
tribution of Machine Learning on 4/5G Networks. To achieve
this, one must connect efficiently to other peers through the
cellular network.

Specifically, this project introduces the functionality lacking
in IPv8 where they have an overlay network and APIs to
connect more or less any peer devices, except when a peer
is behind a Symmetric NAT. IPv8, as it stands, cannot add in
the network peers behind this kind of NAT [9].

To overcome this limitation, this paper introduces a library
to improve the proposal of D. Anderson’s Birthday Attack
blog post [10]. According to that blog post, if both peers
send simultaneously ~ 170000 connection-request packets,
they have =~ 99.9% probability of connecting. This is not
entirely accurate since it doesn’t consider the size of the
NAT’s HashTable nor the timeout time of the NAT. This
paper proposes an improvement using data gathered from
each provider’s cellular data NAT, which is then analyzed to
bias the attack to increase its success rate and avoid sending
unnecessary packets that would, in turn, sabotage the attack.

The solution is a standalone open-source Kotlin library
introduced in the following sections. It is evaluated both as a
standalone library and also as part of IPv8, where the machine
learning workload of TensorFlow Lite [1 1] will be distributed
on Android mobile phones using the IPv8’s ecosystem.

C. Objectives

The primary objectives of this thesis are as follows:

1) Address the NAT puncturing problem to enable seamless
connectivity among devices, even when behind NATS
or firewalls, by developing a NAT puncturing library in
Kotlin.

2) Evaluate the proposed framework’s performance, scala-
bility, and resource utilization through experimental val-
idation and benchmarking on Android devices obtained
from the Tribler lab”.

Zhttps://www.tribler.org/about.html

III. METHODOLOGY

The methodology outlined in this chapter aims to evaluate
the effectiveness of a naive birthday attack in establishing peer-
to-peer connections within a NATed network environment. The
fundamental premise of this investigation lies in addressing
the challenge posed by NAT (Network Address Translation)
configurations, where initiating communication between peers
behind NATSs can be cumbersome due to the necessity for one
party to initiate communication first.

This study builds upon the approach proposed by Kanaris
et al. [9], which suggests a method for peer-to-peer commu-
nication through the randomized exchange of packets until a
successful “match” is achieved. However, the sheer volume
of potential combinations renders this approach impractical.
To address this, we leverage the counter-intuitive probability
concept known as the Birthday Paradox, which allows for
a reduction in the number of attempted combinations while
maintaining a satisfactory success rate. Through experimenta-
tion and analysis, we aim to assess the feasibility and efficacy
of this approach, particularly in the context of mobile network
environments.

A. Evaluating Naive Birthday Attack

Algorithm 1 Naive Birthday Attack

Require: On packet received, send an ACK
Require: On packet received, ack_rcvd < True
Require: On packet received, store senders port
ack_rcvd < False
open UDP socket
msgs_sent < 0
UUID «+ generate_UUID()
packet « create_packet(UUID)
while msgs_sent < 170000 and no ack_rcvd do
send_packet(packet)
end while
if ack_rcvd then
maintain_connection(I P, port_no)
else
Birthday Attack was unsuccessful
end if

The rule for communicating in a NATed network is that the
person behind the NAT must initiate communication first. The
assumption is that the Internet works mainly in a Client-Server
fashion where the Server is discoverable (has a Public static IP
address). This assumption breaks in the case of peer-to-peer
communication between two clients behind a NAT since none
are discoverable; thus, no one can initiate the communication.

A solution to this is as explained in [9]. Both peers should
send packets to random ports until a “match” is achieved. A
match is when peer A sends a packet from port X to port Y,
and peer B sends a packet from port Y to port X in a timeframe
smaller than their NAT’s timeout. One can understand that the
space for this is 655352 in a very tight timeframe, which is

https://www.tribler.org/about.html

almost impossible to achieve, let alone it will take a lot of
time.

This can be improved using the Birthday Paradox [], a
counterintuitive probability theory concept. It states that in
a group of just 23 people, there’s a better than even chance
that two people share the same birthday. This might seem
surprising, as intuition might lead one to think that with 365
days in a year, it would require many more people to have
such a high probability of a shared birthday. The paradox
arises because we’re not just looking for a specific birthday
match but any pair of people with matching birthdays. The
probability of any two people not sharing a birthday decreases
as more people are added to the group, and the opposite, the
probability of at least one pair sharing a birthday increases
rapidly.

The birthday paradox can be used to reduce the number
of combinations of sender_port, recetver_port while main-
taining a satisfactory match probability. From the Birthday
Paradox calculator [12], one can get a 50% success rate of a
match after sending 77162 packets, and for a 99.9% success
rate, 243587 packets are needed. Due to the nature of NATS
(timeouts and a limited number of mapping maintained), these
probabilities are unlikely to occur, but this would be the case
even if all combinations are attempted.

Using the numbers above, an Android application [13] was
developed to attempt to connect two mobile peers using 4/5G
(which is by default using a NAT) using algorithm 1.

The results of the evaluation of 10 runs per carrier are
shown in table I The evaluation of the naive birthday attack
did not show auspicious results. The first conclusion that can
be derived is that whether the attack will lead to a connection
is very dependent on the telecommunication carrier pair. As
one can see, when Vodaphone was one of the peers, there was
always a successful attack. Another fascinating result is that
only Vodaphone connected with a carrier of the same type,
which was also the trial with the most successful connections.

These aside, even though half of the trials resulted in at
least one successful connection, it is not satisfactory since
one successful attempt out of ten makes this protocol costly
in terms of cellular data used and time inefficient since
coordinating two users to start attacking at the same time is
already hard and error-prone on its own, doing it multiple
times to achieve a single connection will deem the protocol
unusable.

B. Determining NAT Timeouts

The NAT timeout is divided into two parts: timeout while
waiting for a response and timeout between consecutive sends.
Le., how long will the NAT mapping remain active while
waiting for the receiver to respond to an outgoing packet,
and how long will the mapping remain active if there are no
outgoing packets (all outgoing packets have been responded
to)?

Starting with the timeout time of waiting for a response,
initially, algorithm 2 establishes a lower and an upper bound
on the time that the mapping will remain active while waiting

for a response. This is achieved by sending a packet to the
server, which incrementally waits more and more time to send
a response until the NAT finally drops the response.

When the bounds are established, a binary search (algorithm
3 is performed on those bounds to find the price —to the
second— timeout of the NAT.

Algorithm 2 Function to find the timeout in an interval of 20
seconds
1: function WAITTIMEOUTTEST
2: delay + 0
create UDP Socket
do

3

4

5: delay < delay + 20

6: sendUDPPacket(delay)

7 while timeoutMsgRevr(delay) is true

8 waitTimeoutBinaryTest(delay — 20, delay)
9: end function

Algorithm 3 Binary search on the timeout interval to get
accuracy to the second

1: function WAITTIMEOUTBINARYTEST(I, ')
2 while [< r do

3 delay < (I +1)/2

4: sendUDPPacket(delay)

5: responseRcvd < timeoutMsgRevr(delay)
6 if response Rcvd then

7 l < delay +1

8 else

9: r < delay — 1

10: end if

11: end while

12: return [, r

13: end function

The test for how much time the NAT mapping can remain
idle without outgoing packets ...

The results of multiple runs of these algorithms on different
telecom carriers can be seen in section VI-C.

C. NAT Types

The analysis of the types of NATs that the different Dutch
Carriers are using can be found in table II. This analysis was
performed using an adapted STUN client, stored on GitHub,
with the rest of the analysis code used throughout this section

[13].

D. Maximum Transmission Unit

The maximum transmission unit (MTU) denotes the maxi-
mum size of a single data unit that can be sent in a network
layer transaction. MTU is related to the maximum frame size
at the data link layer (such as an Ethernet frame).

A larger MTU is linked with reduced overhead, allowing
more data to be transmitted in each packet. Conversely, smaller

Odido Lebara Lyca Vodaphone
Odido FEEEEEFEEEEF
Lebara FEEEEEEEEEF | EEEEEEEEEF
Lyca FEEEESEEEEF | EEEEEEEEEF | EEEEEEEEEF
Vodaphone | EEESES,EEEF | EEEES EEEEF | EEEEEESEEF | EEES,S,EESF,

TABLE I: Results of 10 consecutive Birthday Attacks for each pair of Carriers (F= No connection, S = Succesful Connection)

Algorithm 4 Function to find how long a NAT mapping is
active while there is no communication going on in a range
of 50 seconds

Algorithm 6 STUN Test, NAT Type Detection, and Getting
IP Information

1: function STUNTEST(sock, host, port, sendData)
2: Initialize response data structure

1: function TIMEOUTBETWEENSENDS 3: Convert sendData to hex byte array with headers

2: delay < 0 4: Send byte array to (host, port)

3: INC_SIZE + 50 5: Receive and decode response packet

4 create UDP Socket 6: if response matches and transaction ID correct then
5: prev_port < null 7: Parse attributes like Mapped Address, Source Ad-
6: do dress, etc.

7 wait(delay x 1000) 8: end if

8 sendUDPPacket("TIMEOUT — TEST”) 9: return response

9: resp < timeoutMsgRcvr() 10: end function

10: port < extract_port(resp) 11: function GETNATTYPE(s, sourcelp, stunHost, stunPort)
11: if prev_port = null then 12: Attempt STUN test with provided or default server
12: prev_port <— port 13: if initial test fails then

13: end if 14: for all server in STUN_SERVERS do
14: delay < delay + INC_SIZE 15: Attempt STUN test with server

15: while prev_port = port 16: end for

16: I+ delay— (2 x INC_SIZE) 17: end if

17: r < delay — INC_SIZFE
18: timeoutBetweenSendsBinary ([, r)
19: end function

Algorithm 5 Function to find exactly how long a NAT
mapping is active while there is no communication going on

1: function TIMEOUTBETWEENSENDSBINARY(I, 1)
2 sendUDPPacket("TIMEOUT-TEST”)

3 response < timeoutMessageReceiver()

4: latestPort < extract_port(response)

5: while [< r do

6 midpoint < floor((I +7)/2)

7 delay(midpoint x 1000)

8 sendUDPPacket("TIMEOUT-TEST”)

9 response < timeoutMessageReceiver()

10: port + extract_port(response)
11: if latestPort = port then

12: [+ midpoint + 1

13: else

14: r < midpoint — 1

15: latestPort <— port

16: end if

17: end while

18: return 7,/

19: end function

18: Determine NAT type based on test results

19: Perform additional tests for refining NAT type
20: return NAT type

21: end function

22: function GETIPINFO(sourcelp, sourcePort, stunHost, stunPort)

23: Create socket with specified source IP and port
24: Determine NAT type using GETNATTYPE

25: Close socket

26: return NAT type, external IP, and external port
27: end function

MTU values can help decrease network delay by facilitating
quicker processing and transmission of smaller packets.

The determination of the appropriate MTU often hinges on
the capabilities of the underlying network and may require
manual or automatic adjustment to ensure it doesn’t exceed
these capabilities.

A jumbo frame is an Ethernet frame with a payload greater
than the standard maximum transmission unit (MTU) of 1,500
bytes.

Algorithm 7 is used to determine the MTU of each carrier by
running this algorithm each time with different sim cards from
different providers. It is a binary search which tries to find
the precise number of bytes, where one more byte will cause
the packet to be split into two. Table III shows the MTU of
the different providers tested and whether they support Jumbo
frames.

Algorithm 7 Function to find the Maximum transmission unit
of a carrier
1: function FINDMTU
2 icmp <— new Icmp4a()
3 left <0
4: right < 65507
5: while [eft < right do
6
7
8
9

midPoint + floor((left + right)/2)
result < icmp.ping(packetSize = midPoint)
switch result do
: case Success
10: left < midPoint 4+ 1

11: case Failed

12: right < midPoint — 1
13: end while

14: return right

15: end function

E. Improving the Birthday Attack

Given the cost, the success rate of the Naive Birthday attack,
as shown in table I, is not satisfactory. To improve that, one
needs to understand the inner workings of each NAT, i.e., how
the mapping works, whether there are any patterns, etc.

To answer these questions, an Android mobile client and
a kotlin server were developed [14]. The mobile client sends
packets containing a UUID? to the server from random mobile
ports to random server ports. Each UUID, source and destina-
tion port are saved in a CSV file. The server which lies behind
an unrestricted network does the same; as soon as a packet is
received, it stores the UUID inside the packet, the port that
the mobile sent it from and the port that the server received
it. The two CSVs are then inner-joining on the UUID column,
resulting in two crucial columns: the port the mobile believes
it sent the packet from and the port the packet came from, i.e.
the NAT mapping.

How are the data analyzed, what are the results ? Also
advertise that anyone can download the app etc?

IV. SYSTEM DESIGN
V. IMPLEMENTATION
VI. EVALUATION
A. Inner workings of NATs

In this chapter, we delve into the inner workings of Cellular
Data NAT across various service providers. Through reverse
engineering efforts targeting multiple providers, we unveil the
nuanced mechanisms NAT systems employ. Each provider
has a different implementation of address mapping strate-
gies, which hinders connectivity on peer-to-peer protocols.
By dissecting these NAT architectures, we gain a deeper
understanding of their address-mapping strategies, which can
be used to one’s advantage when they are trying to connect

3https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html

to another peer using cellular data. The analysis is freely
available on GitHub [15].

The data gathered using a simple app developed for this
research [14] utilises a server with a static open IP address
and a phone sending packets to the server containing a UUID.
The phone stores the UUID, a timestamp, the port from which
it sends the packet, and the port to which it sends it. The server
stores the UUID, a timestamp, the phone’s port and the port
it received on. Then, the two files are joined on the UUID,
showing the port the phone opened, and the port the NAT
mapped it to. This relationship is then analyzed across runs to
understand the address-mapping strategy of each NAT.

1) Lebara Netherlands: The initial observation was that
a lot of the sender ports (what the server sees as return
addresses) seemed to be following a linear pattern. Initially,
some random port was chosen, then the next port’s number
would be the one of the previous +1, and so on, until a
condition was met that would cause it to choose a new random
port to start with and then get the consecutive ones and so on.

It was also observed that the initial random ports were often
reused across sessions, but those specific numbers were not
common across runs. For example, if the first port open was
port 12800 and the next x ports, this sequence would be seen
multiple times across the run. It is the same with the second,
third, etc, random ports and the consecutive ones, but not as
frequently.

Line Chart of Time and Value

35723 o
17892 P
27721 B
62371 v
16901
27492
29382
23503
24715
54766
32080
1974
39188
38007
59608
21051
15513
7933
44639 I
64164 L
3625 N

Value

17061047 1706106T 1.706108T 1706117

Time

Fig. 1: Port mapping through time on a single Lebara run of
~ 128 minutes

One can see from figure 1 that the port mapping is following
a pattern. It starts from the 3625 region —region since it is
not the actual starting port—, stays in that region for a bit
(incrementing the port numbers by 1), chooses other random
regions and then goes back to the 3625 region. One can also
notice that the intervals between NAT defaults back to the
3625 region are more or less constant.

Another observation was when observing the length of the
linear increases. During low traffic hours, what was observed

was that the initial “random® port’s number was a multiple of
256 (2%), then the next 255 consecutive ports will be used,
and then another random starting port (again multiple of 256)
will be used and so on as can be seen in figure 2.

Number of concecutive part numbers used
3000
2500
2000

15001

Frequency

1000

j|

0 50 100 150 200 250 300 350

Value

Fig. 2: Frequency of consecutive port numbers used by Lebara

The assumption is that consecutive ports are grouped to-
gether in groups of size 256. The exact number of groups
cannot be inferred since not all ports were observed, but it
seems to span the whole space of 65535 ports. Thus, it is
assumed that there are 256 groups of 256 ports. The ports are
probably grouped in queues, and then users are assigned to
queues. They consume port mappings until the queue runs out
of available ports; then, they are assigned to another queue.
When the ports are freed or timed out, they return to their
queue.

The strategy on who is assigned to which queue cannot
yet be inferred, but it is probably either based on the number
of consumers in the queue or the queue size. Both of these
strategies are reasonable because the same ranges are con-
sumed repeatedly since they timeout and the queue gets full
again, and no one is currently using it since it was empty.

Both strategies are also validated throughout the day. On
low traffic hours, the test phone was assigned a full queue,
which may be either because of the queue size or because no
one else was consuming (morning hours in a residential area).
Similar to peak traffic hours on the university campus, many
times, the phone achieved a significant amount of consecutive
ports. This means that there is some strategy on the NAT to
give the user as many ports as possible, again, either through
the number of consumers on the specific port range or based
on the number of available ports on that range.

2) KPN: KPN behaves exactly like Lebara, that is ports
are grouped in groups of 256 with consecutive port numbers.
The main difference between KPN and Lebara is that KPN
has more infrastructure than Lebara —since Lebara is renting
infrastructure from KPN— thus, as one can see in figure 3,
the test phone managed to consume much more groups of 256

consecutive ports in its entirety than on Lebara. This is likely
the case because of the difference in the number of users per
infrastructure.

Number of consecutive port numbers used by KPN

4000

3000

2000

Frequency

1000

Value

Fig. 3: Frequency of consecutive port numbers used by KPN

The number of subscribers on a single KPN hardware/
IP address makes KPN significantly more predictable than
Lebara. During the testing period, the test phone consumed
a port group in its entirety 32.3% of the time. On top of that
36.9% of the time, the phone got assigned to a group where
the initial port was available (the port number was divisible
by 256). This observation gives birth to a strategy of trying
port numbers divisible by 256. This may significantly increase
the probability of achieving a collision since the phone can
perform a request every ~ 15ms, meaning that it can try all
ports divisible by 256 in under 4 seconds.

3) LycaMobile Netherlands: LycaMobile, although utiliz-
ing the network of KPN, employs a different strategy for their
address mapping. After analyzing ~ 288000 mappings, there
seems to be complete randomness. No mapping is reused (very
few are and in different runs; thus, they are assumed to be
a coincidence), and there is no linearity on the mappings,
making their address mapping strategy a First Come, First
Serve on available ports.

Regarding efficiency, the theory on the inner workings is
a FIFO Queue of available ports that all network subscribers
subscribe to and “consume* free ports. When a port is freed
or time-out, it returns to the Queue. There is no indication
of the port numbers being sorted, or eventually sorted, since
consecutive ports were consumed so rarely, even on low traffic
hours, that it can just be written off as a coincidence.

4) Vodaphone Netherlands:

5) Odido:

B. Nat Types

Knowing the NAT type of the carrier that one is using and
also of the peer they want to connect allows one to adapt their
connectivity strategy to increase the chance of connecting.

Provider Type Area
Lyca NL 4G Full Cone Echo Tu delft
Lyca NL 5g Full Cone Echo Tu delft

Vodaphone 4G

Restrict NAT

Echo Tu delft

Vodaphone 5G

Restrict NAT

Echo Tu delft

KPN 4G

Symmetric NAT

Echo Tu delft

Lebara 4G

Restrict NAT

Echo Tu delft

Orange Belgium 4G

Symmetric NAT

Spiti tu giorgou Bg

Lyca Mobile Belgium 4G

Restrict NAT

Spiti tu giorgou Bg

MyCall Norway 4G

Full Cone NAT

Oslo Airport

Telia Norway 5G

Restrict NAT

Oslo Airport

Telia Norway 4G

Restrict NAT

Oslo Airport

TABLE II: Nat Types of all the carriers tested and the location
of the test

Different strategies should be adopted based on the types, i.e.
a Symmetric NAT requires a Birthday Attack, while one can
easily connect with a peer behind a Full-Cone NAT using a
STUN server. The types of the NATs of various carriers are
presented in table II.

C. Timeout of NATs

Understanding a NAT’s timeout is crucial for efficient
network management and troubleshooting. First, knowing the
timeout period for waiting for a response ensures that THE
protocol administrators can optimize their network configu-
rations for timely communication. Second, it was useful in
understanding patterns of the NAT’s behaviour, such as why
some port numbers are being reused repeatedly in similar time
frames. Thus, aligning the NAT puncturing strategies with
the expected timeout duration increases the probability of a
puncture. These timeouts are shown in table ??

Secondly, NATs also have an idleness timeout, i.e. a map-
ping is deleted if not used. Establishing a connection is costly;
thus, maintaining it, even if not needed at some particular
instance, is the way to go. To achieve that, one needs to send
connection maintenance packets, i.e. empty packets, that will
trick the NAT that some communication is still happening. One
can use the precise timeout of the NAT to send these packets
in such intervals that will not flood the network unnecessarily
while also ensuring that the connection stays active. These
timeouts are shown in table 2?.

D. Maximum Transmission Unit

Knowing the Maximum Transmission Unit (MTU) of a
carrier network offers several advantages. Firstly, it helps op-
timize network performance by determining the largest packet
size that can be transmitted without fragmentation, reducing
overhead and latency. Additionally, understanding the MTU
enables efficient bandwidth utilisation, as smaller packets
may lead to increased overhead and decreased throughput.
Knowledge of the MTU facilitates troubleshooting network
issues, allowing for more effective diagnosis and resolution.

As for jumbo frames, their presence further enhances net-
work efficiency by supporting larger packet sizes than standard
MTU, thereby reducing the overhead of transmitting data.

However, it’s important to ensure compatibility with all de-
vices and networks involved to leverage the benefits of jumbo
frames fully.

The MTU of various carriers and whether their network
supports jumbo frames is presented in table III.

E. Improved Birthday Attack Evaluation and Findings

1) Lebara:

2) Lyca:

3) Odido:

4) Vodaphone: The evaluation results of 10 runs per carrier
using the improved Birthday attack are shown in table ??. The
success rate difference is shown in table ??

VII. DISCUSSION AND FUTURE WORK
VIII. CONCLUSION
APPENDIX

1) Orange Belgium:

2) LycaMobile Belgium:
3) Orange France:

4) SFR France:

5) Telia Norway:

6) MyCall Norway:

REFERENCES

[11 M. S. Louis, Z. Azad, L. Delshadtehrani, S. Gupta, P. Warden, V. J.
Reddi, and A. Joshi, “Towards deep learning using tensorflow lite on
risc-v,” in Third Workshop on Computer Architecture Research with
RISC-V (CARRV), vol. 1, 2019, p. 6.

[2] J. Dai, “Real-time and accurate object detection on edge device with
tensorflow lite,” in Journal of Physics: Conference Series, vol. 1651,
no. 1. IOP Publishing, 2020, p. 012114.

[3] Tribler, “msc placeholder: “swarming Ilm”: decentralised artificial
intelligence issue 7633 tribler/tribler.”” [Online]. Available:
https://github.com/Tribler/tribler/issues/7633

[4] C. F. Jennings and F. Audet, “Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP,” RFC 4787, Jan. 2007.
[Online]. Available: https://www.rfc-editor.org/info/rfc4787

[5] J. Rosenberg, C. Huitema, R. Mahy, and J. Weinberger, “STUN
- Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs),” RFC 3489, Mar. 2003. [Online].
Available: https://www.rfc-editor.org/info/rfc3489

[6] V. Paulsamy and S. Chatterjee, ‘“Network convergence and the
nat/firewall problems,” 2003.

[71 M. Zolotykh, “Comprehensive classification of internet background
noise,” 2020.

[8] J. Mol, J. Pouwelse, D. Epema, and H. Sips, “Free-riding, fairness, and
firewalls in p2p file-sharing,” 2008.

[9] O. Kanaris and J. Pouwelse, “Mass adoption of nats: Survey and
experiments on carrier-grade nats,” 2023.

[10] D. Anderson, “How nat traversal works - nat notes for nerds,”
Apr 2022. [Online]. Available: https://blog.apnic.net/2022/04/26/
how-nat-traversal- works-nat-notes-for-nerds/

[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

https://github.com/Tribler/tribler/issues/7633
https://www.rfc-editor.org/info/rfc4787
https://www.rfc-editor.org/info/rfc3489
https://blog.apnic.net/2022/04/26/how-nat-traversal-works-nat-notes-for-nerds/
https://blog.apnic.net/2022/04/26/how-nat-traversal-works-nat-notes-for-nerds/
https://www.tensorflow.org/

Provider MTU (BYTES) | Allows Jumbo Frames? | Area

T-Mobile

Lebara 4G 65507 Yes Echo Tu delft
Lyca 4G 1473 No Echo tu delft
Vodaphone

KPN 4G 1445 No Echo Tu delft
Orange Belgium 4G 1472 No Spiti tou giorgou
Lyca Mobile Belgium 4G | 42987 Yes Spiti tou giorgou Belgium
MyCall Norway 4G 65507 Yes Oslo Airport
Telia Norway 5G 65507 Yes Oslo Airport
Telia Norway 4G 65507 Yes Oslo Airport

TABLE III: The MTU of various carriers and whether they accept Jumbo frames at the location of testing

[12] Fast-Reflexes, “Fast-reflexes/birthdayproblem-python: Implementation
of a solver of the generalized birthday problem in python.” [Online].
Available: https://github.com/fast-reflexes/BirthdayProblem-Python

[13] O. Kanaris, “NAT measurements gathering with Naive Birthday Attack
for connecting smartphones,” Dec. 2023.

[14] ——, “NAT Mapping data Gathering and analysing tool,” Feb. 2023.

[15] ——, “Cellular Network NAT Reverse Engineering and Exploration,”
Apr. 2024. [Online]. Available: https://https://github.com/OrestisKan/
telecom-analysis

https://github.com/fast-reflexes/BirthdayProblem-Python
https://https://github.com/OrestisKan/telecom-analysis
https://https://github.com/OrestisKan/telecom-analysis

	Introduction
	Problem Description
	Background
	Research problem
	Objectives

	Methodology
	Evaluating Naive Birthday Attack
	Determining NAT Timeouts
	NAT Types
	Maximum Transmission Unit
	Improving the Birthday Attack

	System Design
	Implementation
	Evaluation
	Inner workings of NATs
	Lebara Netherlands
	KPN
	LycaMobile Netherlands
	Vodaphone Netherlands
	Odido

	Nat Types
	Timeout of NATs
	Maximum Transmission Unit
	Improved Birthday Attack Evaluation and Findings
	Lebara
	Lyca
	Odido
	Vodaphone

	Discussion and Future Work
	Conclusion
	Appendix
	Orange Belgium
	LycaMobile Belgium
	Orange France
	SFR France
	Telia Norway
	MyCall Norway

	References

