First 5G deployment of Distributed Artificial
Intelligence

Orestis Kanaris
Delft University of Technology
Delft, Netherlands
0O.Kanaris @student.tudelft.nl

Abstract—
Index Terms—

I. INTRODUCTION
II. PROBLEM DESCRIPTION
A. Background

In recent years, the proliferation of mobile devices has
reached unprecedented levels, with smartphones becoming an
integral part of everyday life. These devices have increas-
ingly powerful hardware, making them suitable candidates
for running complex machine-learning models [1], [2]. Ma-
chine learning on mobile devices holds excellent potential
for many applications, from personalized recommendations
to democratizing big tech. One can imagine a world where
every smartphone (or personal computer) holder holds their
own portion of "Google’s” database (and computation), having
all smartphones intercommunication and share information to
complete a search result, leading to a democratized distributed
peer-to-peer search engine, cleansed from the big tech influ-
ence and hidden agendas [3].

However, deploying machine learning models on mobile
devices presents numerous challenges, including limited com-
putational resources, memory constraints, and the need for
efficient communication between devices. The main struggle
this paper focuses on is connectivity between devices since the
communication in the context of this research will be handled
by the IPv8'. IPv8 is a networking layer which offers identities
and communication with some robustness and provides hooks
for higher layers.

Personal devices, specifically smartphones, communicate
through home Wi-Fi and mobile networks like 4/5G. Using
these networks, the devices usually end up behind a home
NAT or a Carrier-Grade NAT (CGNAT). The existence of
these NATs makes it harder for the devices to communicate
with each other since they lock their discoverability by hiding
the devices behind the NAT’s private network, forcing the
“NATed* device to initiate the connection first. This is not
a particularly impossible problem if one of the two peers has
a static IP address and is discoverable. It is particularly bad
when both peers are behind NATs (even worse when it is

Identify applicable funding agency here. If none, delete this.
Thttps://github.com/Tribler/py-ipv8

Johan Pouwelse (MSc Supervisor)
Delft University of Technology
Delft, Netherlands
J.A.Pouwelse @tudelft.nl

the same NAT, a problem common with CGNATSs [4]), then
both need to initiate the connection first, but none of them is
“visible to the other.

The STUN protocol (RFC3489 [5]) outlines four types of
NATs: Full-cone NAT, Restricted-cone NAT, Port-restricted
cone NAT, and Symmetric NAT. These categories are further
classified in RFC4787 [4] as “easy” NATs, which employ
Endpoint-Independent Mapping (EIM), and ‘“hard“ NATs,
which utilize Endpoint-Dependent Mapping (EDM). EIM en-
sures consistency in the external address and port pair if the
request originates from the same internal port.

As per Huawei [0], the specifications for these NAT types
are as follows:

e Full-cone NAT: This EIM NAT maps all requests from
the same internal IP:Port pair to a corresponding public
[P:Port pair. Moreover, any internet host can communi-
cate with a LAN host by directing packets to the mapped
public IP address and port.

o Restricted-cone NAT: Similar to Full-cone NAT, this
EIM NAT maps an internal IP:Port pair to an external
IP:Port pair. However, communication from an internet
host to a machine behind the NAT is only allowed if
initiated by that machine.

o Port-restricted cone NAT: Also an EIM NAT, similar to
Restricted-cone NAT but with additional restrictions on
port numbers.

o Symmetric NAT: This EDM NAT maps requests from
the same internal IP:Port pair to a specific public IP:Port
pair. However, it considers the packet’s destination as
well. Consequently, requests from the same internal pair
but to different external hosts result in different mappings.

B. Research problem

The central problem of this thesis revolves around the dis-
tribution of Machine Learning on 4/5G Networks. To achieve
this, one must connect efficiently to other peers through the
cellular network.

Specifically, this project introduces the functionality lacking
in IPv8 where they have an overlay network and APIs to
connect more or less any peer devices, except when a peer
is behind a Symmetric NAT. IPv8, as it stands, cannot add in
the network peers behind this kind of NAT [7].

To overcome this limitation, this paper introduces a library
to improve the proposal of D. Anderson’s Birthday Attack
blog post [8]. According to that blog post, if both peers
send simultaneously ~ 170000 connection-request packets,
they have ~ 99.9% probability of connecting. This is not
entirely accurate since it doesn’t consider the size of the
NAT’s HashTable nor the timeout time of the NAT. This
paper proposes an improvement using data gathered from
each provider’s cellular data NAT, which is then analyzed to
bias the attack to increase its success rate and avoid sending
unnecessary packets that would, in turn, sabotage the attack.

The solution is a standalone open-source Kotlin library
introduced in the following sections. It is evaluated both as a
standalone library and also as part of IPv8, where the machine
learning workload of TensorFlow Lite [9] will be distributed
on Android mobile phones using the IPv8’s ecosystem.

C. Objectives

The primary objectives of this thesis are as follows:

1) Address the NAT puncturing problem to enable seamless
connectivity among devices, even when behind NATSs
or firewalls, by developing a NAT puncturing library in
Kotlin.

2) Evaluate the proposed framework’s performance, scala-
bility, and resource utilization through experimental val-

idation and benchmarking on Android devices obtained
from the Tribler lab?.

III. METHODOLOGY

Introduce the chapter

A. Evaluating Naive Birthday Attack

Algorithm 1 Naive Birthday Attack

Require: On packet received, send an ACK
Require: On packet received, ack_rcvd < True
Require: On packet received, store senders port
ack_rcvd < False
open UDP socket
msgs_sent < 0
UUID < generate_UUID()
packet « create_packet(UUID)
while msgs_sent < 170000 and no ack_rcvd do
send_packet(packet)
end while
if ack_rcvd then
maintain_connection(I P, port_no)
else
Birthday Attack was unsuccessful
end if

The rule for communicating in a NATed network is that the
person behind the NAT must initiate communication first. The
assumption is that the Internet works mainly in a Client-Server

Zhttps://www.tribler.org/about.html

fashion where the Server is discoverable (has a Public static IP
address). This assumption breaks in the case of peer-to-peer
communication between two clients behind a NAT since none
are discoverable; thus, no one can initiate the communication.

A solution to this is as explained in [7]. Both peers should
send packets to random ports until a “match” is achieved. A
match is when peer A sends a packet from port X to port Y,
and peer B sends a packet from port Y to port X in a timeframe
smaller than their NAT’s timeout. One can understand that the
space for this is 655352 in a very tight timeframe, which is
almost impossible to achieve, let alone it will take a lot of
time.

This can be improved using the Birthday Paradox [], a
counterintuitive probability theory concept. It states that in
a group of just 23 people, there’s a better than even chance
that two people share the same birthday. This might seem
surprising, as intuition might lead one to think that with 365
days in a year, it would require many more people to have
such a high probability of a shared birthday. The paradox
arises because we’re not just looking for a specific birthday
match but any pair of people with matching birthdays. The
probability of any two people not sharing a birthday decreases
as more people are added to the group, and the opposite, the
probability of at least one pair sharing a birthday increases
rapidly.

The birthday paradox can be used to reduce the number
of combinations of sender_port, recetver_port while main-
taining a satisfactory match probability. From the calculations
of D. Anderson [8], one can get a 50% success rate of a
match after sending ~ 54000 packets, and a 99.9% success
rate ~ 170000 packets are needed. Due to the nature of NATSs
(timeouts and a limited number of mapping maintained), these
probabilities are unlikely to occur, but this would be the case
even if all combinations are attempted.

Using the numbers above, an Android application [10] was
developed to attempt to connect two mobile peers using 4/5G
(which is by default using a NAT) using algorithm 1.

The results of the evaluation of 10 runs per carrier are
shown in table I The evaluation of the naive birthday attack
did not show auspicious results. The first conclusion that can
be derived is that whether the attack will lead to a connection
is very dependent on the telecommunication carrier pair. As
one can see, when Vodaphone was one of the peers, there was
always a successful attack. Another fascinating result is that
only Vodaphone connected with a carrier of the same type,
which was also the trial with the most successful connections.

These aside, even though half of the trials resulted in at
least one successful connection, it is not satisfactory since
one successful attempt out of ten makes this protocol costly
in terms of cellular data used and time inefficient since
coordinating two users to start attacking at the same time is
already hard and error-prone on its own, doing it multiple
times to achieve a single connection will deem the protocol
unusable.

https://www.tribler.org/about.html

Odido Lebara Lyca Vodaphone
Odido FEEEEEFEEEEF
Lebara FEEEEEEEEEF | EEEEEEEEEF
Lyca FEEEESEEEEF | EEEEEEEEEF | EEEEEEEEEF
Vodaphone | EEESES,EEEF | EEEES EEEEF | EEEEEESEEF | EEES,S,EESF,

TABLE I: Results of 10 consecutive Birthday Attacks for each pair of Carriers (F= No connection, S = Succesful Connection)

Lebara

Vodaphone

Odido LycaMobile

TABLE II: Nat types of selected Dutch carriers

B. Analyzing NAT Timeouts and Types

The NAT timeout is divided into two parts: timeout while
waiting for a response and timeout between consecutive sends.
Le., how long will the NAT mapping remain active while
waiting for the receiver to respond to an outgoing packet,
and how long will the mapping remain active if there are no
outgoing packets (all outgoing packets have been responded
to)?

Starting off with the timeout time of waiting for a response,

Algorithm 2 Function to find the timeout in an interval of 20
seconds
1: function WAITTIMEOUTTEST
delay <+ 0
create UDP Socket
do

»

3

4

5: delay <+ delay + 20

6: sendUDPPacket(delay)

7 while timeoutMsgRevr(delay) is true

8 waitTimeoutBinaryTest(delay — 20, delay)
9: end function

Algorithm 3 Binary search on the timeout interval to get

on GitHub, with the rest of the analysis code used throughout
this section [10].

C. Improving the Birthday Attack

Given the cost, the success rate of the Naive Birthday attack,
as shown in table I, is not satisfactory. To improve that, one
needs to understand the inner workings of each NAT, i.e., how
the mapping works, whether there are any patterns, etc.

To answer these questions, an Android mobile client and
a kotlin server were developed [11]. The mobile client sends
packets containing a UUID? to the server from random mobile
ports to random server ports. Each UUID, source and destina-
tion port are saved in a CSV file. The server which lies behind
an unrestricted network does the same; as soon as a packet is
received, it stores the UUID inside the packet, the port that
the mobile sent it from and the port that the server received
it. The two CSVs are then inner-joining on the UUID column,
resulting in two crucial columns: the port the mobile believes
it sent the packet from and the port the packet came from, i.e.
the NAT mapping.

How are the data analyzed, what are the results ? Also
advertise that anyone can download the app etc?

IV. SYSTEM DESIGN
V. IMPLEMENTATION
VI. EVALUATION

A. Improved Birthday Attack Evaluation and Findings

accuracy to the second 1) Lebara:
1: function WAITTIMEOUTBINARYTEST(I, 7) 2) Lyca:
2: while [< r do 3) Odido:
3: delay < (I +1)/2 4) Vodaphone: The results of the evaluation of 10 runs per
4 sendUDPPacket(delay) carrier using the improved Birthday attack are shown in table
5: responseRecvd + timeoutMsgRevr(delay) ??. The success rate difference is shown in table ??
6: if responseRcvd then
7 I < delay + 1 VII. DISCUSSION AND FUTURE WORK
8 else VIII. CONCLUSION
% r < delay — 1 REFERENCES
10: end if))
11 end while [11 M. S. Louis, Z. Azad, L. Delshadtehrani, S. Gupta, P. Warden, V. J.

12: return [, r
13: end function

The test for how much time the NAT mapping can remain
idle without outgoing packets ...

1) NAT Types: The analysis of the types of NATs that the
different Dutch Carriers are using can be found in table II. This
analysis was performed using an adapted STUN client, stored

Reddi, and A. Joshi, “Towards deep learning using tensorflow lite on
risc-v,” in Third Workshop on Computer Architecture Research with
RISC-V (CARRV), vol. 1, 2019, p. 6.

[2] J. Dai, “Real-time and accurate object detection on edge device with
tensorflow lite,” in Journal of Physics: Conference Series, vol. 1651,
no. 1. IOP Publishing, 2020, p. 012114.

[3] Tribler, “msc placeholder: “swarming llm”: decentralised artificial
intelligence issue 7633 tribler/tribler.” [Online]. Available:
https://github.com/Tribler/tribler/issues/7633

3https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html

https://github.com/Tribler/tribler/issues/7633

[4]

[51

[6]

[7]
[8]

[91

[10]

(11]

C. F Jennings and F. Audet, “Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP,” RFC 4787, Jan. 2007.
[Online]. Available: https://www.rfc-editor.org/info/rfc4787

J. Rosenberg, C. Huitema, R. Mahy, and J. Weinberger, “STUN
- Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs),” RFC 3489, Mar. 2003. [Online].
Available: https://www.rfc-editor.org/info/rfc3489

L. Qiaogiao, “What is nat? what are the nat types?” Sep 2021. [Online].
Available: https://info.support.huawei.com/info-finder/encyclopedia/en/
NAT.html

O. Kanaris and J. Pouwelse, “Mass adoption of nats: Survey and
experiments on carrier-grade nats,” 2023.

D. Anderson, “How nat traversal works - nat notes for nerds,”
Apr 2022. [Online]. Available: https://blog.apnic.net/2022/04/26/
how-nat-traversal-works-nat-notes-for-nerds/

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

O. Kanaris, “NAT measurements gathering with Naive Birthday Attack
for connecting smartphones,” Dec. 2023.

——, “NAT Mapping data Gathering and analysing tool,” Feb. 2023.

https://www.rfc-editor.org/info/rfc4787
https://www.rfc-editor.org/info/rfc3489
https://info.support.huawei.com/info-finder/encyclopedia/en/NAT.html
https://info.support.huawei.com/info-finder/encyclopedia/en/NAT.html
https://blog.apnic.net/2022/04/26/how-nat-traversal-works-nat-notes-for-nerds/
https://blog.apnic.net/2022/04/26/how-nat-traversal-works-nat-notes-for-nerds/
https://www.tensorflow.org/

	Introduction
	Problem Description
	Background
	Research problem
	Objectives

	Methodology
	Evaluating Naive Birthday Attack
	Analyzing NAT Timeouts and Types
	NAT Types

	Improving the Birthday Attack

	System Design
	Implementation
	Evaluation
	Improved Birthday Attack Evaluation and Findings
	Lebara
	Lyca
	Odido
	Vodaphone

	Discussion and Future Work
	Conclusion
	References

