Adversarial information retrieval 1in distributed
systems

Jelle Licht, Johan Pouwelse

Abstract—Trust is fundamental to any human interaction.
Technology can assist in determining trustworthiness of informa-
tion shared by strangers. A plentiful amount of techniques have
been developed to do exactly this. However, many existing systems
delegate ultimate trust to a predatory company, or assume that
there is some out of band information available on which to
base initial estimates of trustworthiness. A system without these
drawbacks that consistently classifies peers as honest or dishonest
does not currently exist. The goal of this paper is to evaluate and
analyze the existing systems and their shortcomings, as well as
look at ongoing efforts to make use of the properties of distributed
ledger technology for a way forward.

I. INTRODUCTION

Human interactions are based on trust between individu-
als. The willingness to trust others can be diminished by
continuous dealings with incompetent or abusive behavior,
and technological systems are not exempt from this. Indeed,
whereas advances in predictive models and behavioral ana-
Iytics can advise us regarding the trustworthiness of certain
individuals, the value judgment of whether to trust is still
a essentially human one. This problem is exacerbated when
assessing the trustworthiness of hundreds, thousands or even
millions of individuals, as is often the case in decentralized
content sharing systems.

These systems rely on trust for their core operations once
the amount of content is intractable for an individual to verify
and/or authenticate. Some sort of gatekeeping or filtering
is required. For systems like FaceBook, this responsibility
is delegated to a central authority. A drawback of allowing
FaceBook, or any other central authority for that matter, to
make these decisions is that it can lead to inadvertently taking
part in a emotion study '. A general lack of transparency on the
inner workings of such a system > make it difficult to identify
biases in the selection of content as presented. A decentralized
and transparent solution is needed with accountability and trust
built-in. More specifically, we take a view that focuses on
dealing with spam in these systems.

This work means to provide insight into the existing designs
and techniques in this area, as well as provide a framework
with which to analyze and compare the shortcomings of
existing and proposed solutions. In this paper we demonstrate
the various ways in which existing systems deal with dishonest
peers, specifically by making use of votes cast by peers. Our
major contributions are as follows:

jlicht@fsfe.org, j.a.pouwelse @ewi.tudelft.nl

Thttps://www.theguardian.com/technology/2014/jun/30/
facebook-news-feed-filters-emotion-study

Zhttp://raley.english.ucsb.edu/wp-content/Engl800/Pasquale-blackbox.pdf

o A survey of different dealings with the potential mali-
ciousness of peer-supplied information in decentralized
systems.

e A case study showing how a real-world file-sharing
systems makes use of votes cast by users to improve
relevance of search results.

The rest of this paper is organized as follows: Section II
introduces the problems as tackled by this paper, as well
describing the general challenges plaguing decentralized sys-
tems. Section III describes mitigation strategies which apply
only in specific cases and a more general approach to building
trust. Section IV regards a case study using Tribler, a real-
world fully distributed content sharing and streaming system
Section V gives the concluding remarks of this paper.

II. PROBLEM DESCRIPTION

It is hard to divide the world in good and evil, even more so
for a machine. When exchanging information with a multitude
of individuals, the distinction has to be made between honest
and dishonest peers in order to make informed decisions.

A key feature of decentralized systems is information shar-
ing. In any but the most trivial systems, peers can not feasibly
share all information available in the system: Peers need to use
information retrieval techniques to find relevant information.
A dishonest peer can influence the process of information
retrieval depending on the specific system architecture. By
gaining control of trusted parts of the system, one can choose
to ignore, subvert or simply monitor peer interaction with the
decentralized system. This can be effectively equivalent to
denying certain or all peers service or threatening legal actions
to users of such a system. Deciding which peers to

Decentralized system architectures were originally used
and actively researched as a means to make systems more
robust against censorship. Properly designed decentralized
system exhibit attributes such as scalability, trustworthiness
and reliability as well. Since 1999 the usage of p2p file-sharing
systems has steadily increased, bringing with it an increased
amount of interest in how these systems function. This has
been a double edged sword, as interest come from both well-
meaning users as well as more adversarial parties aiming to
sabotage these systems. A modern decentralized file-sharing
system needs. to take the motivations of adversaries and risks
for legitimate users of the system into account. Tribler is one
of such decentralized file-sharing systems that aims to provide
users with a robust and censorship-proof service.

Modern examples of widely used decentralized systems


https://www.theguardian.com/technology/2014/jun/30/facebook-news-feed-filters-emotion-study
https://www.theguardian.com/technology/2014/jun/30/facebook-news-feed-filters-emotion-study
http://raley.english.ucsb.edu/wp-content/Engl800/Pasquale-blackbox.pdf

are the BitCoin blockchain 3, BitTorrent * and the Internet
itself. Decentralization trends that have been ongoing since
the inception of the Internet, combined with bursts of intense
research activity have contributed to a sort of arms race
between designers of decentralized systems and those perceiv-
ing harm by the successful development and deployment of
decentralized systems. This has led to the creation increasingly
complex decentralization schemes, while these adversaries
have come up with social, legal and technical means to prevent
designers and users of these systems from being successful in
going about their business.

Interactions with honest peers can then be trusted, as well
as the corollary of this statement Voting systems can alleviate
some of the more serious weaknesses seen in most file-
sharing systems. A potential issue with basing spam prevention
measures on active user participation is that users might not be
properly incentivized to act for the greater good of the system.
In the most extreme cases, entities can try to shut down all
services by launching a DDoS attack conducted either in the
open or anonymously [11].

Most of the theoretical models rely on two central assump-
tions:

1) Cooperative users vote in a similar way, properly clas-

sifying spam vs authentic content.

2) Cooperative users vote.

Prior research challenge both of these assumptions in an
empirical study [8]. As the first assumption can be seen as
a stronger one than the second, disproving the second also
allows the first to shown as optimistic in realistic scenarios.

As a corollary, this also means that cooperative users
often help polluters spread misinformation and spam in the
network without being aware of this. Any proposed solution
for dividing the world in good and evil has to take into account
that even honest peers can commit to abusive behavior because
of ignorance.

We aim to give an overview of the abuse types adversaries
have taken to prevent users from finding relevant content by
spamming some part of the service.

A. Index poisoning and routing table poisoning

A relatively simple way of preventing a user from down-
loading certain content is making sure the user has no way
of finding said content. As described in [19], index poisoning
can take place when users depend on other, potentially mali-
cious users for locating content. Index poisoning takes place
when users have no way to distinguish content advertised by
malicious vs cooperative users. Index poisoning is effective
because an adversary only has to advertise non-existing or
corrupt locations of content, after which a naive user will
start the expensive process of following up on finding this
advertised content.

If an adversary is able to advertise the misinformation in
a superior way, this can lead to users repeatedly trying to
make use of the corrupted index information before eventu-
ally stumbling on a correctly advertised piece of content by

3https://www.bitcoin.com/
“http://www.bittorrent.com

happenstance. By then, the damage is done, as most proper
decentralized file-sharing systems rely on other users dealing
with the same piece of content before being able to download
it.

Another issue starts to rear its head when an adversary
is able to contribute and sustain large enough of ostensibly
cooperative peers to the network. As long as no malicious
behavior is undertaken or detected, adversary-controlled nodes
start to become entwined in the distributed routing tables of
normal users. An adversary can employ this position of power
to monitor traffic, or even deny services to any subset of users,
or event deny services related to a specific piece of content
[12].

A way to deal with index- and routing table poisoning is
to routinely label misleading information, and purge it from
local information stores. The advantages of this approach
are two-fold. First of all, the peer will no longer make use
of misleading information, and secondly the peer will no
longer contribute to the problem by distributing the misleading
information. The challenge then becomes to identify with rea-
sonable certainty which pieces of information are misleading.

B. Content poisoning

An orthogonal method for the adversary to deny users of
p2p networks services is to actively flood the network with
mislabeled content. Compared to the index poisoning and
routing table poisoning method, this method does actually lead
to content being available on the network [10]. If the content
has to be downloaded in its entirety before a user is able
to determine its authenticity, this can quickly lead to entire
swarms of peers downloading and in turn sharing spam. One
way of dealing with content poisoning is by estimating the
probability of the content being authentic.

To estimate the pollution of a file-sharing network, the
authors of [10] differentiate between natural and intentional
pollution, but conclude that natural pollution is usually lim-
ited to a negligible amount. A crawler collects metadata an
availability information on the content in a certain network in
a best-effort to create a snapshot.

C. Stream poisoning

The application of live p2p streaming of content gives an
extra set of constraints which make it especially sensitive to
stream poisoning. Dishonest peers can collude to periodically
upload corrupt data to honest peers. Depending on how robust
the transfers are, honest peers might have to re-download
blocks, chunks or even entire files, thereby slowing down the
network with unnecessary work. These same considerations
also exist for non-live streaming systems, but in that case a
system can already be considered usable if honest peers are
able to use the system within some reasonable amount of time.
On the other hand, even a two minute delay could already be
considered too much for a live streaming system.

D. Tag spam

Tagging is the process of annotating content with a tag. P2p
systems can benefit from tagging by providing a self-regulating


https://www.bitcoin.com/
http://www.bittorrent.com

fine-grained filter. When tags are properly applied to content,
search performance should go up by more clearly describing
and distinguishing the content available in a network.

E. votes-spam

If the assumption holds that colluders act in detectable
patterns, techniques employed for identifying Web link farm
spam pages can also be employed on partial views of a
network [18], 3

SumUp [15] is one the systems designed to be resilient
against large swaths of colluding malicious users. It limits
the amount of influence colluders have by introducing a
bastardized version of the MaxFlow problem.

TorrentTrust [14] extends upon the Credence system by
taking into account user trust. The authors also incorrectly
state that Credence is by definition a centralized scheme with
a centralized certificate issuer. This is arguably the case for
the implementation of Credence, but [16] clearly states that
any different gate-keeping scheme can be used.

ITI. SOLUTIONS

This section provides an overview of mitigation strategies to
deter or limit the effect an adversary can have on the quality of
service of the file-sharing system. Ways to prevent dishonest
peers from being successful can be labeled in one of two types.
The first one is to prevent or disincentivize an adversary from
exhibiting the malicious behavior. The second type mitigates
or isolates the effects of the malicious behavior such that
honest peers can make use of the service unhindered.

Having defined the plethora of ways in which an decentral-
ized file-sharing system can be abuses and secured in Section
I, the decision has to be made on how to categorize gathered
information according to trustworthiness.

Building trust among peers is a well researched topic, and
one way of looking at the problem is to see interactions
between peers as edges in a graph, with vertices denoting
peers. Verifying an interaction implies trusting another peer
to some extent. This way of defining trust in a network leads
to Web of Trust. ¢

Credence [16] introduces the concept of object-based rep-
utation as a way to estimate content authenticity. A simple
voting protocol is used where a vote can be cryptographically
traced back to the voter. In principle, an adversary can employ
a Sybil attack [4] and quickly generate lots of misleading
votes. Figure 1 outlines the network topology for a Sybil
attack. Any technique that makes the edge cut between the
honest region and Sybil region smaller can be effective in
practice A gate-keeper mechanism that disincentivizes joining
the network multiple times in rapid succession would alleviate
this issue, such as a cryptographic challenge comparable to the
proof of work mechanism as employed on certain blockchain
structures.

Semantically, Credence assumes a positive vote to be a vote
of confidence that the content is authentic; they do not have

5TODO: Describe [9].
6TODO: expand on WoT links and what not.

Trusted node Small edge cut

Fast-mixing honest region

Sybil region

Fig. 1. Sybil region, taken from TODO: Where? Ask Johan

to be indicative of popularity, although in practice users may
complect the two. Cooperative peers will generally consis-
tently vote to correctly classify authentic and non-authentic
content. Credence uses a weighted average scheme to estimate
the authenticity of each content item based on the collected
votes. Using the set of content items on which two peers both
voted, a local weight is assigned as follows: Assuming that
all cooperative peers vote in a similar fashion, looking at the
correlation between voting behavior allows a peer to quickly
asses the honesty of a different peer.

SpamResist [25] follows a scheme similar to Credence and
Sorcery [22], albeit applied to tag clouds. By dividing peers
in two groups, the unfamiliar peers and the interacted peers,
two different heuristics with widely different characteristics
can be applied. SpamClean [24] is another way to combat tag
spam. Again the authors make use of the insight that users with
similar voting behavior can provide more reliable information
in general, while also leading to degraded performance of the
system for deviants and dishonest peers.

SpamLimit [1]...7.

Scrubber introduces a scheme which allows for swift pun-
ishment of malicious users, while still allowing redemption as
a result of continuous honest behavior [2]. It operates on the
assumption that at least 25% of users react to punishment by
removing the polluted content from the network.

The authors of [6] propose a quorum-based approach, where
peers can create a quorum to assess the honesty of certain
peers based on ad-hoc voting procedure. As long as honest
peers participate in these voting schemes this can be effect,
but as the authors of [21] noted, user participation in voting is
usually nonexistent or wildly inaccurate in the best of cases.
This leads us to believe that earlier mentioned schemes, while
performing admirably in a simulation or experiment, give no
guarantees for real world deployments.

Some special considerations have to be made for preventing
dishonest peers from sharing corrupted data with honest peers
in live streaming systems; honest peers repeatedly trying to
get an uncorrupted copy of the data can shut down the system
if left unchallenged. A trivial solution would be to create a
published checksum for each unit of data, although this leads
to a problematic amount of metadata quickly. The authors of

7TODO: Compare SpamLimit vs SpamResist vs SpamClean



[5] introduce a system for honest peers to make a converging
assessment regarding the trustworthiness of peer groups by
determining and refining probabilities of a specific peer being
complicit in repeatedly delivering corrupted data. By taking
into account that not each peer is responsible for the same
piece of data, this can strike an effective balance between the
amount of metadata required and the sensitivity to abuse by
dishonest peers.

A. Social enrichment

Most p2p networks have users use information contained
within the system to determine which peers to trust. This
can be problematic for users who only joined the network
recently, as they might not have all the information to correctly
categorize peers they interact with. The situation turns into a
bootstrap problem, where being initially basing your behavior
on information begotten from dishonest peers leads to honest
colluding with dishonest peers without by accident.

A different approach allows for using out-of-band infor-
mation to enrich the information gathered from within the
system. One such system is Sorcery as introduced in [22] and
[23], adding social network information as a source of baseline
truth, thereby addressing the bootstrap problem. Sorcery uses
this baseline truth to issue challenges to peers of which no
prior knowledge is available. Comparing challenge responses
to the baseline truth allows each peer to estimate a relative
reliability connected peer in the network.

Sybillnfer as proposed in [3] relies on knowledge of all
social interaction in a network overlay in order to determine
the likelyhood of peers being either honest or dishonest.

IV. INFORMATION RETRIEVAL IN TRIBLER

Tribler search functionality focuses on three key require-
ments: fast results, correct results and spam protection S.
Tribler started out as fork of Yet Another BitTorrent Client,
aiming to use social networks to enhance the user experience.
Active research has extended Tribler to make it a tool for
researchers of decentralized systems to run experiments in the
real world. Tribler is compatible with other BitTorrent clients.
Users of Tribler can discover content from other peers via a
gossip protocol.

A. Communities

Tribler is extendable by introducing communities. A Tri-
bler community is a network overlay via which peers can
exchange predefined messages. The SearchCommunity is a
Tribler community used to share and receive partial torrent
files, allowing users to actually search for content on the
Tribler network in a decentralized manner. Each user can
have any number of content-channels associated with them.
A content channel is essentially a collection of torrent files,
as well as an assorted list of subscribers [20]. The AllChannel
community stores users’ vote preference for content channels,
and shares known votes among peers, allowing for filtering
based via a distributed moderation system. A vote can either

8https://www.tribler.org/ContentSearch/

be positive (or "favorite"), or negative (or "spam"), as defined
by the VoteCast protocol °. Tribler also allows peers to change
their mind at a later time and revoke their vote. Changes
in voting preferences are propagated over the network via a
gossip protocol.

B. Voting data

Tribler stores the current beliefs about of the vote counts
per channel in a local database, allowing for offline analysis of
voting behaviour within the network. We need an understand-
ing of user voting behavior to evaluate how resilient Tribler is
to vote-based spam.

The storage scheme as of this writing allows us to create
a coarse overview of how popular each content channel is by
calculating an effective vote count per channel. We subtract the
number of ’spam’ votes from the number of ’favorite’ votes
for a specific channel, reaching a number of effective votes.

C. Analysis

The VoteCast data crawled from the AllChannel over several
hours allows us to see how popularity is distributed over the
channels in Tribler. Looking at Figure 2, we see that a channel
on average has 127 votes, with only 45 channels having more
than 1000 votes. The gathered data leads us to the conclusion
that there are a handful of reasonably popular channels, and a
myriad of less-popular channels.

Popularity per channel

100000 -
10000 7

1000 7

sum of votes

100 -

10 4

l T T T
10¢ 101! 107 103
Channel rank

Fig. 2. Content channel popularity, demonstrating that all but the 40 most
popular channels only have a handful of subscribers.

9https://www.tribler.org/Votecast/


https://www.tribler.org/ContentSearch/
https://www.tribler.org/Votecast/

REFERENCES

D. Votes over time

Giving a closer look to the gathered VoteCast data reveals
that there exist two clusters of votes which predate the exis-
tence of Tribler, and by extension VoteCast, by respectively 28
and 6 years. It can be assumed that these anomalies are either
the result of either a bug or a curious user testing the limit of
the VoteCast validation logic. These findings have no bearing
on further elaboration of vote-spam behaviour in Tribler. See
Figure 3 for the raw plot of this data, including the anomalous
past votes.

Figure 4 shows how votes are distributed when properly
filtered. We see that the first few votes were steadily cast, after
which the bigger group of users started using the VoteCast
system. '°

Votes over time

105 4

ﬁ

103 4

102 4

Cumm. number of votes

101 4

100 i

T
10° 2 x10°%

Time

4x10% 6&x108

Fig. 3. Voting behaviour over time, unfiltered to include phantom votes.

V. CONCLUSIONS

Clearly delineating the set of honest from dishonest peers
in a fully decentralized system is a difficult and for the
general case unsolved problem. The cold-start problem has
newly joined peers having trouble judging the authenticity of
claims made by peers in the network, while the lack of an
accepted ground truth necessitates heuristics and compromises
to establish an initial bearing on trustworthiness. Adding out of
band information to assist systems with making these decisions
alleviates the cold start problem, but this is not a general
solution for systems without persistent identities or systems
with high churn.

Honest peers can be misled and contribute to the activities of
dishonest peers in various ways. The effects of such poisoned
peers in the network should be mitigated, while allowing

10http://demo.polr.me/7

\otes over time - filtered

i

105 i

104 4

1_03 4

102 4

Cumm. number of votes

1.01 4

lOD‘ 4

2x10%
Time

Fig. 4. Voting behaviour over time, filtered to show the distribution of
legitimitely cast votes.

poisoned peers redemption in the long term if their behavior
is corrected.

The advent of tamper-proof distributed ledger technologies
brings with it a renewed interest in creating a Sybil resistant
scheme for identifying dishonest peers, by making peers
accountable for their behavior.

e [7]

o [13] wrt interaction rules in trust systems

e [17] wrt tag spam

REFERENCES

[1] Eric Chang. “Defending against Spam in Tagging Sys-
tems via Reputations”. In: (2016). URL: http://dlc.
dlib.indiana.edu/dlc/handle/10535/10221 (visited on
07/17/2017).

[2] C. Costa and J. Almeida. “Reputation Systems for
Fighting Pollution in Peer-to-Peer File Sharing Sys-
tems”. In: Seventh IEEE International Conference
on Peer-to-Peer Computing (P2P 2007). Sept. 2007,
pp.- 53-60. por1: 10.1109/P2P.2007.15.

[3] George Danezis and Prateek Mittal. “Sybillnfer: Detect-
ing Sybil Nodes using Social Networks.” In: NDSS. San
Diego, CA. 2009.

[4] John R Douceur. “The sybil attack”. In: International
Workshop on Peer-to-Peer Systems. Springer. 2002,
pp. 251-260.

[5] Rossano Gaeta, Marco Grangetto, and Lorenzo Bovio.
“DIP: Distributed Identification of Polluters in P2P
Live Streaming”. In: ACM Trans. Multimedia Comput.
Commun. Appl. 10.3 (Apr. 2014), 24:1-24:20. ISSN:
1551-6857. por: 10.1145/2568223. URL: http://doi.
acm.org/10.1145/2568223 (visited on 07/17/2017).


http://demo.polr.me/7
http://dlc.dlib.indiana.edu/dlc/handle/10535/10221
http://dlc.dlib.indiana.edu/dlc/handle/10535/10221
https://doi.org/10.1109/P2P.2007.15
https://doi.org/10.1145/2568223
http://doi.acm.org/10.1145/2568223
http://doi.acm.org/10.1145/2568223

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Hatem Ismail, Daniel Germanus, and Neeraj Suri. “P2P
routing table poisoning: A quorum-based sanitizing ap-
proach”. In: Computers & Security 65 (2017), pp. 283—
299. URL: http://www.sciencedirect.com/science/article/
pii/S016740481630178X (visited on 07/17/2017).
Sepandar D Kamvar, Mario T Schlosser, and Hector
Garcia-Molina. “The eigentrust algorithm for reputation
management in p2p networks”. In: Proceedings of the
12th international conference on World Wide Web.
ACM. 2003, pp. 640-651.

Uichin Lee et al. “Understanding Pollution Dynamics
in P2P File Sharing.” In: IPTPS. Vol. 6. 2006, pp. 1-6.
URL: http://netlab.cs.ucla.edu/internal/wiki- internal/
files/uclee2006iptps.pdf (visited on 07/16/2017).

Qiao Lian et al. “An empirical study of collusion
behavior in the Maze P2P file-sharing system”. In:
Distributed Computing Systems, 2007. ICDCS’07. 27th
International Conference on. IEEE, 2007, pp. 56-56.
URL: http://ieeexplore .ieee . org/abstract/document/
4268209/ (visited on 07/16/2017).

Jian Liang, Naoum Naoumov, and Keith W. Ross.
“Efficient blacklisting and pollution-level estimation in
p2p file-sharing systems”. In: AINTEC 3837 (2005),
pp. 1-21. URL: http://link.springer.com/content/pdf/10.
1007/11599593.pdf#page=10 (visited on 07/17/2017).
Haiman Lin et al. “Conducting routing table poisoning
attack in DHT networks”. In: Communications, Circuits
and Systems (ICCCAS), 2010 International Conference
on. IEEE, 2010, pp. 254-258. URL: http://ieeexplore.
ieee . org / abstract / document / 5582015/ (visited on
07/16/2017).

Naoum Naoumov and Keith Ross. “Exploiting p2p
systems for ddos attacks”. In: Proceedings of the Ist
international conference on Scalable information sys-
tems. ACM. 2006, p. 47.

Johan Pouwelse and Martijn de Vos. “Laws for Creating
Trust in the Blockchain Age”. unpublished paper. 2017.
Ian Sibner et al. “TorrentTrust: A Trust-Based, Decen-
tralized Object Reputation Network™. In: (2016).

Dinh Nguyen Tran et al. “Sybil-Resilient Online Con-
tent Voting.” In: NSDI. Vol. 9. 2009, pp. 15-28. URL:
https://www.usenix.org/legacy/events/nsdi09/tech/full _
papers/tran/tran_html/ (visited on 07/16/2017).

Kevin Walsh and Emin Gun Sirer. Thwarting p2p
pollution using object reputation. Tech. rep. Cornell
University, 2005. URL: https://ecommons.cornell.edu/
handle/1813/5680 (visited on 07/17/2017).

Yongang Wang et al. “Dspam: Defending against spam
in tagging systems via users’ reliability”. In: Parallel
and Distributed Systems (ICPADS), 2010 IEEE 16th
International Conference on. IEEE. 2010, pp. 139-146.
Baoning Wu and Brian D. Davison. “Identifying link
farm spam pages”. In: Special interest tracks and
posters of the 14th international conference on World
Wide Web. ACM, 2005, pp. 820-829. URL: http://
dl. acm . org/ citation . cfm ? id = 1062762 (visited on
07/16/2017).

[23]

[25]

Quan Yuan et al. “AStudy OF INDEX POISONING
IN PEER-TO-PEER FILE SHARING SYSTEMS”. In:
(). URL: https : // pdfs . semanticscholar . org / efle /
10d6047a1¢c22a07d0214d29092f1270e810.pdf (visited
on 07/17/2017).

N. Zeilemaker et al. “Tribler: Search and stream”. In:
2011 IEEE International Conference on Peer-to-Peer
Computing. Aug. 2011, pp. 164-165. por: 10.1109/
P2P.2011.6038729.

Ennan Zhai et al. “Resisting tag spam by leveraging
implicit user behaviors”. In: Proceedings of the VLDB
Endowment 10.3 (2016), pp. 241-252. URL: http://
dl . acm . org / citation . cfm ? id = 3021939 (visited on
07/17/2017).

Ennan Zhai et al. “Sorcery: Could we make P2P content
sharing systems robust to deceivers?” In: Peer-to-Peer
Computing, 2009. P2P’09. IEEE Ninth International
Conference on. IEEE, 2009, pp. 11-20. URL: http://
ieeexplore.ieee.org/abstract/document/5284532/ (visited
on 07/16/2017).

Ennan Zhai et al. “Sorcery: Overcoming deceptive votes
in P2P content sharing systems”. en. In: Peer-fo-Peer
Netw. Appl. 4.2 (June 2011), pp. 178-191. 1SSN: 1936-
6442, 1936-6450. po1: 10.1007/s12083-010-0074-2.
URL: https://link.springer.com/article/10.1007/s12083-
010-0074-2.

Ennan Zhai et al. “Spamclean: Towards spam-free tag-
ging systems”. In: Computational Science and Engi-
neering, 2009. CSE’09. International Conference on.
Vol. 4. IEEE, 2009, pp. 429-435. URL: http://ieeexplore.
ieee . org / abstract / document / 5284153/ (visited on
07/16/2017).

Ennan Zhai et al. “SpamResist: making peer-to-peer
tagging systems robust to spam”. In: Global Telecom-
munications Conference, 2009. GLOBECOM 2009.
IEEE. IEEE, 2009, pp. 1-6. URL: http://ieeexplore.
ieee . org / abstract / document / 5425801/ (visited on
07/16/2017).


http://www.sciencedirect.com/science/article/pii/S016740481630178X
http://www.sciencedirect.com/science/article/pii/S016740481630178X
http://netlab.cs.ucla.edu/internal/wiki-internal/files/uclee2006iptps.pdf
http://netlab.cs.ucla.edu/internal/wiki-internal/files/uclee2006iptps.pdf
http://ieeexplore.ieee.org/abstract/document/4268209/
http://ieeexplore.ieee.org/abstract/document/4268209/
http://link.springer.com/content/pdf/10.1007/11599593.pdf#page=10
http://link.springer.com/content/pdf/10.1007/11599593.pdf#page=10
http://ieeexplore.ieee.org/abstract/document/5582015/
http://ieeexplore.ieee.org/abstract/document/5582015/
https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/tran/tran_html/
https://www.usenix.org/legacy/events/nsdi09/tech/full_papers/tran/tran_html/
https://ecommons.cornell.edu/handle/1813/5680
https://ecommons.cornell.edu/handle/1813/5680
http://dl.acm.org/citation.cfm?id=1062762
http://dl.acm.org/citation.cfm?id=1062762
https://pdfs.semanticscholar.org/ef1e/10d6047a1c2f2a07d0214d29092f1270e810.pdf
https://pdfs.semanticscholar.org/ef1e/10d6047a1c2f2a07d0214d29092f1270e810.pdf
https://doi.org/10.1109/P2P.2011.6038729
https://doi.org/10.1109/P2P.2011.6038729
http://dl.acm.org/citation.cfm?id=3021939
http://dl.acm.org/citation.cfm?id=3021939
http://ieeexplore.ieee.org/abstract/document/5284532/
http://ieeexplore.ieee.org/abstract/document/5284532/
https://doi.org/10.1007/s12083-010-0074-2
https://link.springer.com/article/10.1007/s12083-010-0074-2
https://link.springer.com/article/10.1007/s12083-010-0074-2
http://ieeexplore.ieee.org/abstract/document/5284153/
http://ieeexplore.ieee.org/abstract/document/5284153/
http://ieeexplore.ieee.org/abstract/document/5425801/
http://ieeexplore.ieee.org/abstract/document/5425801/

	Introduction
	Problem description
	Index poisoning and routing table poisoning
	Content poisoning
	Stream poisoning
	Tag spam
	votes-spam

	Solutions
	Social enrichment

	Information retrieval in Tribler
	Communities
	Voting data
	Analysis
	Votes over time

	Conclusions

