-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrule_based.py
69 lines (57 loc) · 1.97 KB
/
rule_based.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
'''
@Author: WANG Maonan
@Author: PangAoyu
@Description: 基于规则空的TSC模型, 选择等待车辆最多的路口通行
'''
import numpy as np
from loguru import logger
from tshub.utils.get_abs_path import get_abs_path
from tshub.utils.init_log import set_logger
from stable_baselines3.common.env_checker import check_env
from utils.make_tsc_env import make_env
path_convert = get_abs_path(__file__)
set_logger(path_convert('./'))
if __name__ == '__main__':
log_path=log_path = path_convert('./log/')
sumo_cfg = path_convert("./TSCScenario/SumoNets/train_four_345/env/train_four_345.sumocfg")
tsc_env_generate = make_env(
tls_id='J1',
num_seconds=3600,
sumo_cfg=sumo_cfg,
use_gui=True,
log_file=log_path,
env_index=0,
)
tsc_env = tsc_env_generate()
# Check Env
#print(tsc_env.observation_space.sample())
#print(tsc_env.action_space.n)
print('-------------------------------------')
check_env(tsc_env)
def get_action(states):
phase_list=get_phase()
occupancy=states[:,1]
occupancy_list=np.zeros(phase_list.shape[0])
for i in range(0,phase_list.shape[0]):
occupancy_list[i]=(occupancy*phase_list[i]).sum()
max_index=occupancy_list.argmax()
return max_index
def get_phase():
phases_4=[[1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1]]
return np.array(phases_4)
# Simulation with environment
dones = False
tsc_env.reset()
total_reward=0
action=0
while not dones:
states, rewards, truncated, dones, infos = tsc_env.step(action=action)
print('states',states.shape)
total_reward+=rewards
action = get_action(states)
logger.info(f"SIM: {infos['step_time']} \n+State:{states}; \n+Reward:{rewards}.")
print('total reward',total_reward)
tsc_env.close()