-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
211 lines (188 loc) · 7.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright 2020 - 2022 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
import argparse
import sys
import warnings
from subprocess import Popen
import json
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.parallel
import torch.utils.data.distributed
from monai.losses import DiceCELoss, DiceFocalLoss
from monai.metrics import DiceMetric
from monai.transforms import Activations, AsDiscrete, Compose
from monai.utils import set_determinism
from monai.utils.enums import MetricReduction
from icecream import ic
from optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from engine import normal_engine as NormEngine
from engine import poor_vram_engine as PoorEngine
from utils.data_utils import get_loader
from utils import get_args
from models import vista_model_registry
from utils import terminate as Terminator
from utils import asker as Asker
def start_tb(log_dir):
cmd = ["tensorboard", "--logdir", log_dir]
Popen(cmd, stderr=sys.stderr, stdout=sys.stdout, shell=False)
def main():
args = get_args()
if not args.test_mode:
ic.disable()
args.logdir = Asker.ask_logdir_root(args)
args.cache = Asker.ask_cache_root(args)
if input('Disable icecream?[Y/n]').lower() != 'n' and args.test_mode:
ic.disable()
args.amp = not args.noamp
if not args.test_mode:
with open(os.path.join(args.logdir, 'args.json'), 'w+') as jout:
json.dump(args.__dict__, jout)
if args.seed > -1:
set_determinism(seed=args.seed)
if args.distributed:
args.ngpus_per_node = torch.cuda.device_count()
print("Found total gpus", args.ngpus_per_node)
args.world_size = args.ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args,))
else:
main_worker(gpu=0, args=args)
def main_worker(gpu, args):
if args.distributed:
torch.multiprocessing.set_start_method("fork", force=True)
np.set_printoptions(formatter={"float": "{: 0.3f}".format}, suppress=True)
args.gpu = gpu
if args.distributed:
args.rank = args.rank * args.ngpus_per_node + gpu
dist.init_process_group(
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
)
torch.cuda.set_device(args.gpu)
torch.backends.cudnn.benchmark = True
loader = get_loader(args)
print(args.rank, " gpu", args.gpu)
if args.rank == 0:
print("Batch size is:", args.batch_size, "epochs", args.max_epochs)
model = vista_model_registry[args.sam_base_model](
args.sam_pretrain_ckpt,
image_size=args.sam_image_size,
encoder_in_chans=args.roi_z_iter * 3,
patch_embed_3d=args.patch_embed_3d,
vae=args.vae
)
"""
try:
print('Try to use torch.compile')
model = torch.compile(model)
except Exception as e:
import traceback
traceback.format_exec()
print('GG, no torch.compile could use')
"""
if (lf := args.loss_func) == 'dice_ce':
dice_loss = DiceCELoss(sigmoid=True)
elif lf == 'dice_focal':
dice_loss = DiceFocalLoss(sigmoid=True)
else:
raise NotImplementedError(f'Loss: {lf} not implement now.')
post_label = AsDiscrete(to_onehot=args.nc)
post_pred = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
dice_acc = DiceMetric(include_background=args.eval_bg, reduction=MetricReduction.MEAN, get_not_nans=True)
Terminator.show_model_info(model, args)
Terminator.show_some_hyper(args)
best_acc = 0
start_epoch = 0
optimizer_state = None
# Doing checkpoint recover
if args.checkpoint is not None:
checkpoint = torch.load(args.checkpoint, map_location="cpu")
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint["state_dict"].items():
new_state_dict[k] = v
if args.pop_pos_embed:
print("pop_pos_embed")
new_state_dict.pop("image_encoder.patch_embed.proj.weight")
new_state_dict.pop("image_encoder.patch_embed.proj.bias")
model.load_state_dict(new_state_dict, strict=False)
elif args.pop_point_embed:
print("pop_point_embed")
new_state_dict.pop("prompt_encoder.point_embeddings.0.weight")
new_state_dict.pop("prompt_encoder.point_embeddings.1.weight")
new_state_dict.pop("prompt_encoder.point_embeddings.2.weight")
new_state_dict.pop("prompt_encoder.point_embeddings.3.weight")
model.load_state_dict(new_state_dict, strict=False)
else:
model.load_state_dict(new_state_dict, strict=True)
if args.resume_ckpt:
if "epoch" in checkpoint:
start_epoch = checkpoint["epoch"]
if "best_acc" in checkpoint:
best_acc = checkpoint["best_acc"]
if "optimizer" in checkpoint:
optimizer_state = checkpoint["optimizer"]
print("=> loaded checkpoint '{}' (epoch {}) (bestacc {})".format(args.checkpoint, start_epoch, best_acc))
model.cuda(args.gpu)
if args.distributed:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], output_device=args.gpu, find_unused_parameters=True
)
if args.optim_name == "adam":
optimizer = torch.optim.Adam(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight)
elif args.optim_name == "adamw":
optimizer = torch.optim.AdamW(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight)
elif args.optim_name == "sgd":
optimizer = torch.optim.SGD(
model.parameters(), lr=args.optim_lr, momentum=args.momentum, nesterov=True, weight_decay=args.reg_weight
)
else:
raise ValueError("Unsupported Optimization Procedure: " + str(args.optim_name))
if optimizer_state is not None:
optimizer.load_state_dict(optimizer_state)
# override lr by the given value
for param_group in optimizer.param_groups:
param_group["lr"] = args.optim_lr
if args.lrschedule == "warmup_cosine":
scheduler = LinearWarmupCosineAnnealingLR(
optimizer, warmup_epochs=args.warmup_epochs, max_epochs=args.max_epochs
)
elif args.lrschedule == "cosine_anneal":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.max_epochs)
if args.checkpoint is not None:
scheduler.step(epoch=start_epoch)
else:
scheduler = None
if args.poor_mode:
run_training = PoorEngine.run_training
else:
run_training = NormEngine.run_training
accuracy = run_training(
model=model,
train_loader=loader[0],
val_loader=loader[1],
optimizer=optimizer,
loss_func=dice_loss,
acc_func=dice_acc,
args=args,
scheduler=scheduler,
start_epoch=start_epoch,
post_label=post_label,
post_pred=post_pred,
)
return accuracy
if __name__ == "__main__":
main()