-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare.py
176 lines (143 loc) · 6.17 KB
/
prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import transformers
from accelerate import Accelerator, dispatch_model
from accelerate.utils import LoggerType
import torch
from torch import nn
from torch.utils.data import random_split
from torch.optim.lr_scheduler import LambdaLR
from torch.optim import AdamW, SGD
from torch.utils.data import DataLoader, Subset
from npo.beato import dataset as NBD
from torchvision.models import vit_l_32, vit_h_14, resnet18
from tqdm.auto import tqdm
from sklearn.model_selection import train_test_split as tts
import numpy as np
import torchmetrics
import peft
def prepare_loss_fn(config):
lconfig = config.get('loss', {'init': 'torch.nn.MSELoss', 'init_param': {}})
fn = eval(lconfig['init'])(**lconfig['init_param'])
return fn
def prepare_scheduler(optimizer, config):
lr_configs = config['lr_scheduler']
scheduler_list = []
for lr_config in lr_configs:
scheduler = eval(lr_config['init'])(optimizer, **lr_config['init_param'])
warp_steps = eval(lr_config['warp_step'])
scheduler_list.append([scheduler, warp_steps])
return scheduler_list
def prepare_warmup(optimizer, config):
lr_config = config['warmup']
# tot_steps = lr_config['total_steps']
warmup_factor = lr_config['factor']
warmup_steps = lr_config['steps']
func = lambda step: min(step / warmup_steps, 1.) * warmup_factor + (1 - warmup_factor)
warmup_lr = LambdaLR(optimizer, lr_lambda=func)
return warmup_lr
def prepare_model(config):
from npo.beato.models import reg
# config['model']
model = reg.RegModel()
return model
def prepare_optimizer(model: nn.Module, config):
optimizer = SGD(model.parameters(), lr=config['lr'])
# optimizer = AdamW(model.parameters(), lr=config['lr'])
return optimizer
def prepare_loader(config: dict, acc: Accelerator = None):
ds = NBD.get_ds(config, acc=acc)
rs = config['random_seed']
loader_config = config['loader']
test_ratio = loader_config['test_ratio']
tconfig = loader_config['train']
vconfig = loader_config.get('val', None)
fn = eval(loader_config.get('collate_fn', 'torch.utils.data.default_collate'))
if vconfig is None:
return DataLoader(ds, **loader_config['train'], collate_fn=fn)
# if config['num_gpu'] == 1:
idx_list = np.arange(len(ds))
train_ids, val_ids = tts(idx_list, test_size=test_ratio, random_state=rs)
tds, vds = Subset(ds, train_ids), Subset(ds, val_ids)
tloader = DataLoader(tds, **tconfig, collate_fn=fn)
vloader = DataLoader(vds, **vconfig, collate_fn=fn)
return tloader, vloader
def prepare_all(config: dict):
sp = config.get('split_batch', False)
if config['do_tracker'] and not config['debug']:
accelerator = Accelerator(split_batches=sp, log_with=['wandb'], **config['accelerator'])
accelerator.init_trackers(config['project'], config)
else:
accelerator = Accelerator(split_batches=sp, **config['accelerator'])
# pass
tloader, vloader = prepare_loader(config, acc=accelerator)
config['warmup']['steps'] = config['warmup']['epochs'] * len(tloader)
model = prepare_model(config)
optimizer = prepare_optimizer(model, config)
warmup = prepare_warmup(optimizer, config)
scheduler_list = prepare_scheduler(optimizer, config)
# model = dispatch_model(model, device_map='auto')
model, tloader, vloader, optimizer, warmup = accelerator.prepare(model, tloader, vloader, optimizer, warmup)
for i, pack in enumerate(scheduler_list):
scheduler_list[i][0] = accelerator.prepare(pack[0])
loss_fn = prepare_loss_fn(config)
mapper = {
'model': model,
'tloader': tloader,
'vloader': vloader,
'accelerator': accelerator,
'optimizer': optimizer,
'scheduler': scheduler_list,
'warmup': warmup,
'loss_fn': accelerator.prepare(loss_fn),
}
return mapper
def train_epoch(
model,
tloader,
accelerator: Accelerator,
optimizer,
warmup, loss_fn, config, **kwargs):
model.train()
total = len(tloader)
pbar = tqdm(enumerate(tloader), total=total, ncols=80, disable=not accelerator.is_local_main_process)
loss_train = .0
ep = kwargs['epochs']
pbar.set_description(f'Epochs:[{ep}]:')
# with open('./static/wtf.txt', 'a+') as fout:
for idx, pack in pbar:
with accelerator.accumulate(model):
if config['warmup']['do_warmup']:
warmup.step()
optimizer.zero_grad(set_to_none=True)
pred_ = model(pack['image'])
pred = torch.sum(pred_, dim=0)
# with accelerator.autocast(cache_enabled=True):
loss_iter = loss_fn(torch.log(pred + 1) / torch.log(torch.e), pack['label'][:1])
accelerator.backward(loss_iter)
has_nan = any(torch.isnan(param.grad).any() for param in model.parameters())
# Clip the gradients to a maximum absolute value of 1.0
if has_nan:
# accelerator.print("Gradient contains NaN. Clipping gradient values...")
torch.nn.utils.clip_grad_value_(model.parameters(), clip_value=.5)
optimizer.step()
with torch.no_grad():
loss_train += loss_iter.item()
pbar.set_postfix({'train loss': loss_train / (idx + 1)})
accelerator.log({
'step loss': loss_train / (idx + 1),
'lr': optimizer.param_groups[0]['lr']
}, step=ep * total + (idx + 1))
# break
# exit(0)
return loss_train / (idx + 1)
@torch.no_grad()
def val(model, vloader, loss_fn, acc, **kwargs):
model.eval()
pbar = tqdm(enumerate(vloader), total=len(vloader), ncols=80, disable=not acc.is_local_main_process)
loss_val = .0
for idx, pack in pbar:
pred = model(pack['image'])
pred = torch.sum(pred, dim=0)
loss_iter = loss_fn(pred, pack['label'])
loss_val += loss_iter.item()
pbar.set_postfix({'val loss': loss_val / (idx + 1)})
return loss_val / (idx + 1)