-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcifar_train_esgr_reals.py
464 lines (376 loc) · 20.7 KB
/
cifar_train_esgr_reals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# -*- coding:utf-8 -*-
'''
Implememtation of the proposed method ESGR-reals (for ablation study only)
It needs the exemplars of ESGR-mix
'''
import tensorflow as tf
tf.set_random_seed(1993)
import utils_lenet
import utils_nin
import utils_resnet
import numpy as np
np.random.seed(1993)
import os
import pprint
import visualize_result
from sklearn.metrics import confusion_matrix
import pickle
flags = tf.app.flags
flags.DEFINE_float('adam_lr', 1e-3, 'default: 1e-3')
flags.DEFINE_boolean('use_momentum', True, 'Gradient descent or gradient descent with momentum')
flags.DEFINE_float('momentum', 0.9, '')
flags.DEFINE_integer('epochs_per_category', 70, 'number of epochs for each training session')
flags.DEFINE_integer('train_batch_size', 128, 'training batch size')
flags.DEFINE_integer('test_batch_size', 128, 'test batch size')
flags.DEFINE_float('base_lr', 0.01, 'lenet: 0.01, nin: 0.1, resnet: 0.1')
flags.DEFINE_float('weight_decay', 0.00001, '0.00001, resnet: 0.002')
flags.DEFINE_float('lr_factor', 5., '')
flags.DEFINE_integer('display_interval', 20, '')
flags.DEFINE_integer('test_interval', 100, '')
lr_strat = [49, 63]
flags.DEFINE_string('result_dir', 'result/', '')
# Network architecture
flags.DEFINE_string('network_arch', 'lenet', 'lenet, resnet, nin')
flags.DEFINE_boolean('use_dropout', True, 'only for lenet')
flags.DEFINE_integer('num_resblocks', 5, 'number of resblocks when ResNet is used')
flags.DEFINE_boolean('use_softmax', True, 'True: softmax; False: sigmoid')
flags.DEFINE_boolean('no_truncate', False, '')
# Add how many classes every time
flags.DEFINE_integer('nb_cl', 10, '')
# DEBUG
flags.DEFINE_integer('from_class_idx', 0, 'starting category_idx')
flags.DEFINE_integer('to_class_idx', 99, 'ending category_idx')
# Init params when new nodes added
flags.DEFINE_string('init_strategy', 'no', 'no | last | all')
# Order file
flags.DEFINE_string('order_file', 'order_1', '[order_1, order_2, order_3]')
# Exemplar parent folder(this method is dependant on ESGR-mix (for ablation study only), so run ESGR-mix first, then
# input the result folder of ESGR-mix here, e.g. esgr_mix_balanced_high_1.0-1.0_icarl_2000)
flags.DEFINE_string('exemplars_base_folder', 'esgr_mix_balanced_high_1.0-1.0_icarl_2000', '')
FLAGS = flags.FLAGS
pp = pprint.PrettyPrinter()
def main(_):
pp.pprint(flags.FLAGS.__flags)
# Load the class order
order = []
with open('cifar-100_%s.txt' % FLAGS.order_file) as file_in:
for line in file_in.readlines():
order.append(int(line))
order = np.array(order)
import cifar100
NUM_CLASSES = 100 # number of classes
NUM_TRAIN_SAMPLES_PER_CLASS = 500 # number of training samples per class
NUM_TEST_SAMPLES_PER_CLASS = 100 # number of test samples per class
train_images, train_labels, train_one_hot_labels, \
test_images, test_labels, test_one_hot_labels, \
raw_images_train, raw_images_test, pixel_mean = cifar100.load_data(order, mean_subtraction=True)
# Number of all training samples
NUM_TRAIN_SAMPLES_TOTAL = NUM_CLASSES * NUM_TRAIN_SAMPLES_PER_CLASS
NUM_TEST_SAMPLES_TOTAL = NUM_CLASSES * NUM_TEST_SAMPLES_PER_CLASS
def build_cnn(inputs, is_training):
train_or_test = {True: 'train', False: 'test'}
if FLAGS.network_arch == 'lenet':
logits, end_points = utils_lenet.lenet(inputs, num_classes=NUM_CLASSES, is_training=is_training,
use_dropout=FLAGS.use_dropout,
scope=('LeNet-'+train_or_test[is_training]))
elif FLAGS.network_arch == 'resnet':
logits, end_points = utils_resnet.ResNet(inputs, train_or_test[is_training], num_outputs=NUM_CLASSES,
alpha=0.0, n=FLAGS.num_resblocks,
scope=('ResNet-'+train_or_test[is_training]))
elif FLAGS.network_arch == 'nin':
logits, end_points = utils_nin.nin(inputs, is_training=is_training, num_classes=NUM_CLASSES,
scope=('NIN-' + train_or_test[is_training]))
else:
raise Exception('Invalid network architecture')
return logits, end_points
'''
Define variables
'''
# Save all intermediate result in the result_folder
method_name = '_'.join(os.path.basename(__file__).split('.')[0].split('_')[2:])
cls_func = '' if FLAGS.use_softmax else '_sigmoid'
result_base_folder = os.path.join(FLAGS.result_dir, 'cifar-100_' + FLAGS.order_file,
'nb_cl_' + str(FLAGS.nb_cl),
'non_truncated' if FLAGS.no_truncate else 'truncated',
FLAGS.network_arch + ('_%d' % FLAGS.num_resblocks if FLAGS.network_arch == 'resnet' else '') + cls_func + '_init_' + FLAGS.init_strategy,
'weight_decay_' + str(FLAGS.weight_decay),
'base_lr_' + str(FLAGS.base_lr),
'adam_lr_' + str(FLAGS.adam_lr))
result_folder = os.path.join(result_base_folder,
FLAGS.exemplars_base_folder + '_ablation_epoch_based')
exemplars_folder = os.path.join(result_base_folder,
FLAGS.exemplars_base_folder,
'exemplars')
if not os.path.exists(exemplars_folder):
raise Exception()
# Add a "_run-i" suffix to the folder name if the folder exists
if os.path.exists(result_folder):
temp_i = 2
while True:
result_folder_mod = result_folder + '_run-' + str(temp_i)
if not os.path.exists(result_folder_mod):
result_folder = result_folder_mod
break
temp_i += 1
os.makedirs(result_folder)
print('Result folder: %s' % result_folder)
graph_cls = tf.Graph()
with graph_cls.as_default():
batch_images = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
batch = tf.Variable(0, trainable=False, name='LeNet-train/iteration')
learning_rate = tf.placeholder(tf.float32, shape=[])
'''
Network output mask
'''
mask_output = tf.placeholder(tf.bool, shape=[NUM_CLASSES])
'''
Old and new ground truth
'''
one_hot_labels_truncated = tf.placeholder(tf.float32, shape=[None, None])
'''
Define the training network
'''
train_logits, _ = build_cnn(batch_images, True)
train_masked_logits = tf.gather(train_logits, tf.squeeze(tf.where(mask_output)), axis=1)
train_masked_logits = tf.cond(tf.equal(tf.rank(train_masked_logits), 1),
lambda: tf.expand_dims(train_masked_logits, 1),
lambda: train_masked_logits)
train_pred = tf.argmax(train_masked_logits, 1)
train_ground_truth = tf.argmax(one_hot_labels_truncated, 1)
correct_prediction = tf.equal(train_pred, train_ground_truth)
train_accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
train_batch_weights = tf.placeholder(tf.float32, shape=[None])
reg_weights = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
regularization_loss = FLAGS.weight_decay * tf.add_n(reg_weights)
'''
More Settings
'''
if FLAGS.use_softmax:
empirical_loss = tf.losses.softmax_cross_entropy(onehot_labels=one_hot_labels_truncated,
logits=train_masked_logits,
weights=train_batch_weights)
else:
empirical_loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=one_hot_labels_truncated,
logits=train_masked_logits,
weights=train_batch_weights)
loss = empirical_loss + regularization_loss
if FLAGS.use_momentum:
opt = tf.train.MomentumOptimizer(learning_rate, FLAGS.momentum).minimize(loss, global_step=batch)
else:
opt = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=batch)
'''
Define the testing network
'''
test_logits, _ = build_cnn(batch_images, False)
test_masked_logits = tf.gather(test_logits, tf.squeeze(tf.where(mask_output)), axis=1)
test_masked_logits = tf.cond(tf.equal(tf.rank(test_masked_logits), 1),
lambda: tf.expand_dims(test_masked_logits, 1),
lambda: test_masked_logits)
test_masked_prob = tf.nn.softmax(test_masked_logits)
test_pred = tf.argmax(test_masked_logits, 1)
test_accuracy = tf.placeholder(tf.float32)
'''
Copy network (define the copying op)
'''
if FLAGS.network_arch == 'resnet':
all_variables = tf.get_collection(tf.GraphKeys.WEIGHTS)
else:
all_variables = tf.trainable_variables()
copy_ops = [all_variables[ix + len(all_variables) // 2].assign(var.value()) for ix, var in
enumerate(all_variables[0:len(all_variables) // 2])]
'''
Init certain layers when new classes added
'''
init_ops = tf.no_op()
if FLAGS.init_strategy == 'all':
init_ops = tf.global_variables_initializer()
elif FLAGS.init_strategy == 'last':
if FLAGS.network_arch == 'lenet':
init_vars = [var for var in tf.global_variables() if 'fc4' in var.name and 'train' in var.name]
elif FLAGS.network_arch == 'resnet':
init_vars = [var for var in tf.global_variables() if 'fc' in var.name and 'train' in var.name]
elif FLAGS.network_arch == 'nin':
init_vars = [var for var in tf.global_variables() if 'ccp6' in var.name and 'train' in var.name]
init_ops = tf.initialize_variables(init_vars)
'''
Create session
'''
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config, graph=graph_cls)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
'''
Summary
'''
train_loss_summary = tf.summary.scalar('train_loss', loss)
train_acc_summary = tf.summary.scalar('train_accuracy', train_accuracy)
test_acc_summary = tf.summary.scalar('test_accuracy', test_accuracy)
summary_dir = os.path.join(result_folder, 'summary')
if not os.path.exists(summary_dir):
os.makedirs(summary_dir)
train_summary_writer = tf.summary.FileWriter(os.path.join(summary_dir, 'train'), sess.graph)
test_summary_writer = tf.summary.FileWriter(os.path.join(summary_dir, 'test'))
iteration = 0
'''
Declaration of other vars
'''
# Average accuracy on seen classes
aver_acc_over_time = dict()
aver_acc_per_class_over_time = dict()
conf_mat_over_time = dict()
# Network mask
mask_output_val = np.zeros([NUM_CLASSES], dtype=bool)
'''
Class Incremental Learning
'''
print('Starting from category ' + str(FLAGS.from_class_idx + 1) + ' to ' + str(FLAGS.to_class_idx + 1))
print('Adding %d categories every time' % FLAGS.nb_cl)
assert (FLAGS.from_class_idx % FLAGS.nb_cl == 0)
for category_idx in range(FLAGS.from_class_idx, FLAGS.to_class_idx + 1, FLAGS.nb_cl):
to_category_idx = category_idx + FLAGS.nb_cl - 1
if FLAGS.nb_cl == 1:
print('Adding Category ' + str(category_idx + 1))
else:
print('Adding Category %d-%d' % (category_idx + 1, to_category_idx + 1))
'''
Train classification model
'''
if FLAGS.no_truncate:
mask_output_val[:] = True
else:
mask_output_val[:to_category_idx + 1] = True
if to_category_idx > 0:
# init certain layers
sess.run(init_ops)
# Training set (current category)
train_indices = [idx for idx in range(NUM_TRAIN_SAMPLES_TOTAL) if
category_idx <= train_labels[idx] <= to_category_idx]
train_x = raw_images_train[train_indices]
if FLAGS.no_truncate:
train_y_truncated = train_one_hot_labels[train_indices, :]
else:
train_y_truncated = train_one_hot_labels[train_indices, :to_category_idx + 1]
train_weights_val = np.ones(len(train_x))
'''
Generate samples of old classes
'''
if category_idx > 0:
exemplars = np.load(os.path.join(exemplars_folder, 'exemplars_%d.npy' % category_idx))
for old_category_idx in range(0, category_idx):
# Load old class model
exemplars_idx_cur_cls = np.random.choice(len(exemplars[old_category_idx]),
NUM_TRAIN_SAMPLES_PER_CLASS, replace=True)
exemplars_cur_cls = exemplars[old_category_idx][exemplars_idx_cur_cls]
train_x = np.concatenate((train_x, exemplars_cur_cls))
train_weights_val = np.concatenate((train_weights_val,
np.ones(NUM_TRAIN_SAMPLES_PER_CLASS)))
train_y_old_cls = np.zeros((NUM_TRAIN_SAMPLES_PER_CLASS, to_category_idx+1))
train_y_old_cls[:, old_category_idx] = np.ones((NUM_TRAIN_SAMPLES_PER_CLASS))
train_y_truncated = np.concatenate((train_y_truncated, train_y_old_cls))
# # DEBUG:
# train_indices = [idx for idx in range(NUM_SAMPLES_TOTAL) if train_labels[idx] <= category_idx]
# train_x = raw_images_train[train_indices, :]
# # Record the response of the new data using the old model(category_idx is consistent with the number of True in mask_output_val_prev)
# train_y_truncated = train_one_hot_labels[train_indices, :category_idx + 1]
# Training set
# Convert the raw images from the data-files to floating-points.
train_x = cifar100.convert_images(train_x, pixel_mean=pixel_mean)
# Testing set
test_indices = [idx for idx in range(len(test_labels)) if test_labels[idx] <= to_category_idx]
test_x = test_images[test_indices]
test_y = test_labels[test_indices]
# Shuffle the indices and create mini-batch
batch_indices_perm = []
epoch_idx = 0
lr = FLAGS.base_lr
'''
Training with mixed data
'''
while True:
# Generate mini-batch
if len(batch_indices_perm) == 0:
if epoch_idx >= FLAGS.epochs_per_category:
break
if epoch_idx in lr_strat:
lr /= FLAGS.lr_factor
print("NEW LEARNING RATE: %f" % lr)
epoch_idx = epoch_idx + 1
shuffled_indices = range(train_x.shape[0])
np.random.shuffle(shuffled_indices)
for i in range(0, len(shuffled_indices), FLAGS.train_batch_size):
batch_indices_perm.append(shuffled_indices[i:i + FLAGS.train_batch_size])
batch_indices_perm.reverse()
popped_batch_idx = batch_indices_perm.pop()
# Use the random index to select random images and labels.
train_weights_batch_val = train_weights_val[popped_batch_idx]
train_y_batch = [train_y_truncated[k] for k in popped_batch_idx]
train_x_batch = train_x[popped_batch_idx, :, :, :]
# Train
train_loss_summary_str, train_acc_summary_str, train_accuracy_val, \
train_loss_val, train_empirical_loss_val, train_reg_loss_val, _ = sess.run(
[train_loss_summary, train_acc_summary, train_accuracy, loss, empirical_loss,
regularization_loss, opt], feed_dict={batch_images: train_x_batch,
one_hot_labels_truncated: train_y_batch,
mask_output: mask_output_val,
learning_rate: lr,
train_batch_weights: train_weights_batch_val})
# Test
if iteration % FLAGS.test_interval == 0:
sess.run(copy_ops)
# Divide and conquer: to avoid allocating too much GPU memory
test_pred_val = []
for i in range(0, len(test_x), FLAGS.test_batch_size):
test_x_batch = test_x[i:i + FLAGS.test_batch_size]
test_pred_val_batch = sess.run(test_pred, feed_dict={batch_images: test_x_batch,
mask_output: mask_output_val})
test_pred_val.extend(test_pred_val_batch)
test_accuracy_val = 1. * np.sum(np.equal(test_pred_val, test_y)) / (len(test_pred_val))
test_per_class_accuracy_val = np.diag(confusion_matrix(test_y, test_pred_val))
test_acc_summary_str = sess.run(test_acc_summary, feed_dict={test_accuracy: test_accuracy_val})
test_summary_writer.add_summary(test_acc_summary_str, iteration)
print("TEST: step %d, lr %.4f, accuracy %g" % (iteration, lr, test_accuracy_val))
print("PER CLASS ACCURACY: " + " | ".join(str(o) + '%' for o in test_per_class_accuracy_val))
# Print the training logs
if iteration % FLAGS.display_interval == 0:
train_summary_writer.add_summary(train_loss_summary_str, iteration)
train_summary_writer.add_summary(train_acc_summary_str, iteration)
print("TRAIN: epoch %d, step %d, lr %.4f, accuracy %g, loss %g, empirical %g, reg %g" % (
epoch_idx, iteration, lr, train_accuracy_val, train_loss_val,
train_empirical_loss_val, train_reg_loss_val))
iteration = iteration + 1
'''
Final test(before the next class is added)
'''
sess.run(copy_ops)
# Divide and conquer: to avoid allocating too much GPU memory
test_pred_val = []
for i in range(0, len(test_x), FLAGS.test_batch_size):
test_x_batch = test_x[i:i + FLAGS.test_batch_size]
test_pred_val_batch = sess.run(test_pred, feed_dict={batch_images: test_x_batch,
mask_output: mask_output_val})
test_pred_val.extend(test_pred_val_batch)
test_accuracy_val = 1. * np.sum(np.equal(test_pred_val, test_y)) / (len(test_pred_val))
conf_mat = confusion_matrix(test_y, test_pred_val)
test_per_class_accuracy_val = np.diag(conf_mat)
# Record and save the cumulative accuracy
aver_acc_over_time[to_category_idx] = test_accuracy_val
aver_acc_per_class_over_time[to_category_idx] = test_per_class_accuracy_val
conf_mat_over_time[to_category_idx] = conf_mat
dump_obj = dict()
dump_obj['flags'] = flags.FLAGS.__flags
dump_obj['aver_acc_over_time'] = aver_acc_over_time
dump_obj['aver_acc_per_class_over_time'] = aver_acc_per_class_over_time
dump_obj['conf_mat_over_time'] = conf_mat_over_time
np_file_result = os.path.join(result_folder, 'acc_over_time.pkl')
with open(np_file_result, 'wb') as file:
pickle.dump(dump_obj, file)
visualize_result.vis(np_file_result)
# Save the final model
checkpoint_dir = os.path.join(result_folder, 'checkpoints')
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver.save(sess, os.path.join(checkpoint_dir, 'model.ckpt'))
sess.close()
if __name__ == '__main__':
tf.app.run()