-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtrain.py
289 lines (242 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os, sys
sys.path.append('data')
sys.path.append('model')
sys.path.append('utils')
import numpy as np
from utils import *
from ShapeNet import *
from model import *
from loss import *
import torch
import torch.optim as optim
import argparse
import time, datetime
import visdom
import random
# Parameters
parser = argparse.ArgumentParser()
parser.add_argument('--dataRoot', type = str, default = '../data/ShapeNetSmall/', help = 'file root')
parser.add_argument('--dataTrainList', type = str, default = 'data/train_list_plane.txt', help = 'train file list')
parser.add_argument('--dataTestList', type = str, default = 'data/test_list_plane.txt', help = 'test file list')
parser.add_argument('--workers', type = int, help = 'number of data loading workers', default = 12)
parser.add_argument('--nEpoch', type = int, default = 100, help = 'number of epochs to train for')
parser.add_argument('--hidden', type = int, default = 192, help = 'number of units in hidden layer')
parser.add_argument('--featDim', type = int, default = 963, help = 'number of units in perceptual feature layer')
parser.add_argument('--coordDim', type = int, default = 3, help='number of units in output layer')
parser.add_argument('--weightDecay', type = float, default = 5e-6, help = 'weight decay for L2 loss')
parser.add_argument('--lr', type = float, default = 5e-5, help = 'learning rate')
parser.add_argument('--env', type = str, default = "pixel2mesh", help = 'visdom environment')
parser.add_argument('--lamb', type = float, default = 0.0001, help = 'loss coeff for img reconstruction task')
opt = parser.parse_args()
print (opt)
# Read initial mesh
num_blocks = 3
num_supports = 2
ellipsoid = read_init_mesh('data/info_ellipsoid.dat')
for i in range(3):
idx = ellipsoid["lap_idx"][i].shape[0]
np.place(ellipsoid["lap_idx"][i], ellipsoid["lap_idx"][i] == -1, idx)
# Check Device (CPU / GPU)
use_cuda = torch.cuda.is_available()
dtype = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
# Launch visdom for visualization
vis = visdom.Visdom(port = 8097, env = opt.env)
now = datetime.datetime.now()
save_path = now.isoformat()
dir_name = os.path.join('log', save_path)
if not os.path.exists(dir_name):
os.mkdir(dir_name)
logname = os.path.join(dir_name, 'log.txt')
blue = lambda x:'\033[94m' + x + '\033[0m'
opt.manualSeed = random.randint(1, 10000) # fix seed
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
best_val_loss = 10
# Create Dataset
dataset = ShapeNet(opt.dataRoot, opt.dataTrainList)
dataloader = torch.utils.data.DataLoader(dataset, batch_size = 1, shuffle = True, num_workers=int(opt.workers))
dataset_test = ShapeNet(opt.dataRoot, opt.dataTestList)
dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size = 1, shuffle = False, num_workers = int(opt.workers))
len_dataset = len(dataset)
print('training set', len_dataset)
print('testing set', len(dataset_test))
# Create Network
network = P2M_Model(opt.featDim, opt.hidden, opt.coordDim, ellipsoid['pool_idx'], ellipsoid['supports'], use_cuda)
network.apply(weights_init) #initialization of the weight
#network.load_state_dict(torch.load("log/2019-01-18T02:32:24.320546/network_4.pth"))
if use_cuda:
network.cuda()
# Create Optimizer
lrate = opt.lr
optimizer = optim.Adam(network.parameters(), lr = lrate)
# meters to record stats on learning
train_loss = AverageValueMeter()
val_loss = AverageValueMeter()
with open(logname, 'a') as f: #open and append
f.write(str(network) + '\n')
# Initialize visdom
vis_title = 'Pixel2Mesh'
vis_legend = ['Image Loss', 'Mesh Loss', 'Total Loss']
iter_plot = create_vis_plot(vis, 'Iteration', 'Loss', vis_title, vis_legend)
# Train model on the dataset
for epoch in range(opt.nEpoch):
# Initialize loss
my_img_loss = 0.
my_pts_loss = 0.
update_vis_plot(vis, 0, my_img_loss, my_pts_loss, iter_plot, "replace")
# Set to Train mode
train_loss.reset()
network.train()
# learning rate schedule
if epoch > 0 and epoch % 50 == 0:
lrate = lrate / 5.
optimizer = optim.Adam(network.parameters(), lr = lrate)
for i, data in enumerate(dataloader, 0):
if i != 0 and (i % 30 == 0):
update_vis_plot(vis, i, my_img_loss, my_pts_loss, iter_plot, "append")
optimizer.zero_grad()
img, pts, normal, _, _ = data
init_pts = torch.from_numpy(ellipsoid['coord'])
if use_cuda:
img = img.cuda()
pts = pts.cuda()
normal = normal.cuda()
init_pts = init_pts.cuda()
pred_pts_list, pred_feats_list, pred_img = network(img, init_pts)
my_img_loss = 0 #opt.lamb * total_img_loss(pred_img, img)
my_pts_loss = total_pts_loss(pred_pts_list, pred_feats_list, pts, ellipsoid, use_cuda)
loss = my_pts_loss + my_img_loss if epoch == 0 else my_pts_loss
#loss = my_pts_loss
loss.backward()
train_loss.update(loss.item())
optimizer.step()
if i % 50 == 0:
vis.scatter(X = torch.squeeze(pts).data.cpu(),
win = 'TRAIN_INPUT',
opts = dict(
title = "TRAIN_INPUT",
markersize = 2,
),
)
vis.scatter(X = pred_pts_list[0].data.cpu(),
win = 'TRAIN_INPUT_RECONSTRUCTED_L1',
opts = dict(
title="TRAIN_INPUT_RECONSTRUCTED_L1",
markersize=2,
),
)
vis.scatter(X = pred_pts_list[1].data.cpu(),
win = 'TRAIN_INPUT_RECONSTRUCTED_L2',
opts = dict(
title="TRAIN_INPUT_RECONSTRUCTED_L2",
markersize=2,
),
)
vis.scatter(X = pred_pts_list[2].data.cpu(),
win = 'TRAIN_INPUT_RECONSTRUCTED_L3',
opts = dict(
title="TRAIN_INPUT_RECONSTRUCTED_L3",
markersize=2,
),
)
vis.image(img.data.cpu().squeeze(),
win = 'INPUT IMAGE',
opts = dict(
title = 'Input Image',
caption = 'Input Image')
)
vis.image(pred_img.data.cpu().squeeze(),
win = 'RECONSTRUCTED IMAGE',
opts = dict(
title = 'Reconstructed Image',
caption = 'Reconstructed Image')
)
print('[%d: %d/%d] train loss: %f ' %(epoch, i, len_dataset, loss.item()))
"""
# Validation
val_loss.reset()
network.eval()
with torch.no_grad():
for i, data in enumerate(dataloader_test, 0):
img, pts, normal, _, _ = data
init_pts = torch.from_numpy(ellipsoid['coord'])
if use_cuda:
img = img.cuda()
pts = pts.cuda()
normal = normal.cuda()
init_pts = init_pts.cuda()
pred_pts_list, pred_feats_list, pred_img = network(img, init_pts)
my_img_loss = opt.lamb * total_img_loss(pred_img, img)
my_pts_loss = total_pts_loss(pred_pts_list, pred_feats_list, pts, ellipsoid, use_cuda)
loss = my_pts_loss + my_img_loss
val_loss.update(loss.item())
if loss.item() < best_val_loss:
best_val_loss = loss.item()
if i % 200 ==0 :
vis.scatter(X = torch.squeeze(pts).data.cpu(),
win = 'VAL_INPUT',
opts = dict(
title = "VAL_INPUT",
markersize = 2,
),
)
vis.scatter(X = pred_pts_list[0].data.cpu(),
win = 'VAL_INPUT_RECONSTRUCTED_L1',
opts = dict(
title = "VAL_INPUT_RECONSTRUCTED_L1",
markersize = 2,
),
)
vis.scatter(X = pred_pts_list[1].data.cpu(),
win = 'VAL_INPUT_RECONSTRUCTED_L2',
opts = dict(
title = "VAL_INPUT_RECONSTRUCTED_L2",
markersize = 2,
),
)
vis.scatter(X = pred_pts_list[2].data.cpu(),
win = 'VAL_INPUT_RECONSTRUCTED_L3',
opts = dict(
title = "VAL_INPUT_RECONSTRUCTED_L3",
markersize = 2,
),
)
vis.image(img.data.cpu().squeeze(),
win = 'INPUT IMAGE',
opts = dict(
title = 'Input Image',
caption = 'Input Image')
)
vis.image(pred_img.data.cpu().squeeze(),
win = 'RECONSTRUCTED IMAGE',
opts = dict(
title = 'Reconstructed Image',
caption = 'Reconstructed Image')
)
print('[%d: %d/%d] val loss: %f ' %(epoch, i, len(dataset_test), loss_net.item()))
# Update visdom curve
val_curve.append(val_loss.avg)
vis.line(X = np.column_stack((np.arange(len(train_curve)), np.arange(len(val_curve)))),
Y = np.column_stack((np.array(train_curve), np.array(val_curve))),
win = 'loss',
opts = dict(title = "loss", legend = ["train_curve", "val_curve"], markersize = 2, ), )
vis.line(X = np.column_stack((np.arange(len(train_curve)), np.arange(len(val_curve)))),
Y = np.log(np.column_stack((np.array(train_curve), np.array(val_curve)))),
win = 'log',
opts = dict(title = "log", legend = ["train_curve", "val_curve"], markersize = 2, ), )
#dump stats in log file
log_table = {
"train_loss" : train_loss.avg,
"val_loss" : val_loss.avg,
"epoch" : epoch,
"lr" : lrate,
"bestval" : best_val_loss,
}
print(log_table)
with open(logname, 'a') as f: #open and append
f.write('json_stats: ' + json.dumps(log_table) + '\n')
"""
#save last network
print('saving net...')
torch.save(network.state_dict(), '%s/network_%i.pth' % (dir_name, epoch))