-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsupervised.py
629 lines (478 loc) · 20.1 KB
/
supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
import argparse
import os
import time
from logging import getLogger
import warnings
import numpy as np
from tqdm import tqdm
import yaml
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data as data
import torch.distributed as dist
import torch.autograd as autograd
from src.utils import (
bool_flag,
initialize_exp,
restart_from_checkpoint,
fix_random_seeds,
AverageMeter,
init_distributed_mode,
accuracy,
add_slurm_params,
get_dataloader,
optimizer_config,
)
from src.models import get_model, get_classifier, modelfusion
from src.datasets import get_dataset
#from src.configs import model_configs
logger = getLogger()
def main(args):
global best_acc
tags = yaml.load(open('configs/pretrained_checkpoints.yaml'), Loader=yaml.FullLoader)
if args.tag is not None and args.tag in tags:
for key in tags[args.tag]:
print(key)
setattr(args, key, tags[args.tag][key])
# distributed training environments and seeds
init_distributed_mode(args)
fix_random_seeds(args.seed)
# amd gpu cards environment variables
os.environ['MIOPEN_USER_DB_PATH']=os.path.join(args.dump_path, 'amd/rank_%d' % args.rank)
os.environ['MIOPEN_FIND_MODE']='2'
# initialize logger ...
logger, training_stats = initialize_exp( args, "epoch", "loss", "prec1", "prec5", "loss_val", "prec1_val", "prec5_val")
# build data
train_dataset, val_dataset, datamsg = get_dataset(args.data_name, args.tf_name, args)
# build dataloaders
train_loader, val_loader, additional_loaders = get_dataloader(train_dataset, val_dataset, datamsg, args)
logger.info("Building data done")
## build trunk and load weights
total_feat_dim, feat_dims, models = 0, [], []
for i in range(len(args.arch)):
per_model, msg, feat_dim = get_model(args.arch[i], skip_pool=args.skip_pool, \
pretrain_path = None if len(args.pretrained)==0 else args.pretrained[i], img_dim=datamsg['img_dim'])
#fix1st_pretrain_path = args.fix1st_pretrained ) #e.g. 'regnet_y_32gf'
logger.info("Load pretrained model with msg: {}".format(msg))
feat_dims.append(feat_dim)
models.append(per_model)
#build classifier
classifier = get_classifier(args.classifier, datamsg['nclass'], feat_dims, logger, args)
#print(classifier.linear.weight.data)
logger.info('classifier {}'.format(classifier))
# model to gpu
device = torch.device("cuda:" + str(args.gpu_to_work_on))
# model is either Identity or backbone. only classifier is trainable
model, classifier = modelfusion(args.richway, models, classifier, args)
model, classifier = model.to(device), classifier.to(device)
classifier = nn.parallel.DistributedDataParallel(
classifier,
device_ids=[args.gpu_to_work_on],
)
optimizer = optimizer_config(classifier, args, logger, \
head_reg = lambda x: True if args.exp_mode in ['lineareval','biaslineareval'] else lambda x: 'classifier' in x )
logger.info('optimizer {}'.format(optimizer))
# set scheduler
if args.scheduler_type == "step":
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, args.decay_epochs, gamma=args.gamma
)
elif args.scheduler_type == "cosine":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, args.epochs, eta_min=args.final_lr
)
logger.info('lr scheduler {}'.format(scheduler))
# Optionally resume from a checkpoint
to_restore = {"epoch": 0, "best_acc": 0.}
if 'save' in args.mode:
restart_from_checkpoint(
os.path.join(args.dump_path, "checkpoint.pth.tar"),
run_variables=to_restore,
state_dict=classifier,
)
start_epoch = to_restore["epoch"]
best_acc = to_restore["best_acc"]
else:
restart_from_checkpoint(
os.path.join(args.dump_path, "checkpoint.pth.tar"),
run_variables=to_restore,
state_dict=classifier,
optimizer=optimizer,
scheduler=scheduler,
)
start_epoch = to_restore["epoch"]
best_acc = to_restore["best_acc"]
#cudnn.benchmark = True
eval('setattr(torch.backends.cudnn, "benchmark", True)')
if args.cuda_deterministic:
logger.info("cuda deterministic")
eval('setattr(torch.backends.cudnn, "deterministic", True)')
# if 'save' in args.mode:
# def _save(loader, prefix, args):
# targets, rep, correct, pred, logits, top1acc, top5acc = save_feature(loader,model, classifier)
# if 'acc' in args.mode:
# np.array([top1acc]).dump(os.path.join(args.dump_path, f'{prefix}_acc_{args.rank}.npy'))
# print(top1acc)
# if 'rep' in args.mode:
# rep = rep.astype(np.float16)
# rep.dump(os.path.join(args.dump_path, f'{prefix}_represent_{args.rank}.npy'))
# if 'pred' in args.mode :
# pred.dump(os.path.join(args.dump_path, f'{prefix}_pred_{args.rank}.npy'))
# correct.dump(os.path.join(args.dump_path, f'{prefix}_corrects_{args.rank}.npy'))
# if 'prob' in args.mode:
# logits.dump(os.path.join(args.dump_path, f'{prefix}_logits_{args.rank}.npy'))
# prob = np.exp(logits) / np.exp(logits).sum(axis=1,keepdims=True)
# prob = prob.max(axis=1)
# prob.dump(os.path.join(args.dump_path, f'{prefix}_prob_{args.rank}.npy'))
# # multi-class version adaboost called samme.r https://hastie.su.domains/Papers/samme.pdf (page 9)
# weight = -((datamsg['nclass']-1) / datamsg['nclass']) * np.log(prob + 1e-8) * (pred == targets)
# weight.dump(os.path.join(args.dump_path, f'{prefix}_weight_{args.rank}.npy'))
# h = (datamsg['nclass']-1) * (np.log(prob + 1e-8))
# targets.dump(os.path.join(args.dump_path, f'{prefix}_targets_{args.rank}.npy'))
# for key in additional_loaders:
# if key in args.mode:
# _save(additional_loaders[key], key, args)
# if '_train_' in args.mode:
# _save(train_loader, 'train', args)
# if '_val_' in args.mode:
# _save(val_loader, 'val', args)
# return
# if args.mode == 'eval_only':
# indices = datamsg['targetmask'] if 'targetmask' in datamsg else None
# loss, top1, top5 = validate_network(val_loader, model, classifier,args, indices)
# logger.info(
# "Test:\t"
# "Loss {loss:.4f}\t"
# "Acc@1 {top1:.3f}\t".format(loss=loss, top1=top1))
# return
# if args.mode == 'eval_train_only':
# indices = datamsg['targetmask'] if 'targetmask' in datamsg else None
# loss, top1, top5 = validate_network(train_loader, model, classifier,args, indices)
# logger.info(
# "Train:\t"
# "Loss {loss:.4f}\t"
# "Acc@1 {top1:.3f}\t".format(loss=loss, top1=top1))
# return
for epoch in range(start_epoch, args.epochs):
if epoch == 0 and args.save_init:
save_dict = {
"epoch": 0,
"state_dict": classifier.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"best_acc": 0,
}
torch.save(save_dict, os.path.join(args.dump_path, f"checkpoint_init.pth.tar"))
logger.info('saved weight initialization')
# train the network for one epoch
logger.info("============ Starting epoch %i ... ============" % epoch)
# set samplers
train_loader.sampler.set_epoch(epoch)
tr_epoch, tr_loss, tr_top1, tr_top5 = train(model, classifier, optimizer, train_loader, epoch, args)
scheduler.step()
if (epoch+1) % args.eval_freq == 0:
loss, top1, top5 = validate_network(val_loader, model, classifier, args,)
if args.custom_eval_func is not None:
from src import custom_eval
for custom_eval_name in args.custom_eval_func:
custom_eval_func = getattr(custom_eval, custom_eval_name)
custom_eval_results = custom_eval_func(val_loader, model, classifier, args)
logger.info(f'{custom_eval_name}: ' + ','.join(['%.4f' % val for val in custom_eval_results]))
# additional validation sets
additional_msg = {}
for key in additional_loaders:
loader = additional_loaders[key]
ad_loss, ad_top1, ad_top5 = validate_network(loader, model, classifier,args)
additional_msg[key]=[ad_loss, ad_top1, ad_top5]
training_stats.update([tr_epoch, tr_loss, tr_top1, tr_top5] + [loss, top1, top5])
# log best acc
#global best_acc
is_best = False
if top1 > best_acc:
#best_acc = top1.avg.item()
best_acc = top1
is_best = True
if args.rank == 0:
logger.info(
"Test:\t"
"Loss {loss:.4f}\t"
"Acc@1 {top1:.3f}\t"
"Best Acc@1 so far {acc:.1f}".format(loss=loss, top1=top1, acc=best_acc))
for key in additional_msg:
loss, top1, _ = additional_msg[key]
logger.info(
"additional Test {key}:\t"
"Loss {loss:.4f}\t"
"Acc@1 {top1:.3f}".format(key=key, loss=loss, top1=top1))
# save checkpoint
if args.rank == 0:
save_dict = {
"epoch": epoch + 1,
"state_dict": classifier.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"best_acc": best_acc,
}
torch.save(save_dict, os.path.join(args.dump_path, "checkpoint.pth.tar"))
if (epoch+1) % args.save_freq == 0:
torch.save(save_dict, os.path.join(args.dump_path, f"checkpoint_epoch{epoch+1}.pth.tar"))
if is_best:
torch.save(save_dict, os.path.join(args.dump_path, "best.pth.tar"))
logger.info("Training of the supervised linear classifier on frozen features completed.\n"
"Top-1 test accuracy: {acc:.1f}".format(acc=best_acc))
def train(model, reglog, optimizer, loader, epoch, args ):
"""
Train the models on the dataset.
"""
# running statistics
batch_time = AverageMeter()
data_time = AverageMeter()
# training statistics
top1 = AverageMeter()
top5 = AverageMeter()
losses = AverageMeter()
end = time.perf_counter()
model.eval()
reglog.train()
criterion = nn.CrossEntropyLoss().cuda()
for iter_epoch, record in enumerate(loader):
# measure data loading time
data_time.update(time.perf_counter() - end)
if len(record) == 2:
inp, target = record
elif len(record) == 3:
inp, target, meta = record
#move to gpu
inp = inp.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# forward
with torch.no_grad():
output = model(inp)
output = reglog(output)
loss = criterion(output, target)
# compute the gradients
optimizer.zero_grad()
loss.backward()
optimizer.step()
# update stats
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), inp.size(0))
top1.update(acc1[0], inp.size(0))
top5.update(acc5[0], inp.size(0))
batch_time.update(time.perf_counter() - end)
end = time.perf_counter()
# verbose
if args.rank == 0 and iter_epoch % 50 == 0:
logger.info(
"Epoch[{0}] - Iter: [{1}/{2}]\t"
"Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
"Data {data_time.val:.3f} ({data_time.avg:.3f})\t"
"Loss {loss.val:.4f} ({loss.avg:.4f})\t"
"Prec {top1.val:.3f} ({top1.avg:.3f})\t"
"LR {lr}".format(
epoch,
iter_epoch,
len(loader),
batch_time=batch_time,
data_time=data_time,
loss=losses,
top1=top1,
lr=optimizer.param_groups[0]["lr"],
)
)
return epoch, losses.avg, top1.avg.item(), top5.avg.item()
def validate_network(val_loader, model, classifier, args, indices=None):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
#global best_acc
# switch to evaluate mode
model.eval()
classifier.eval()
criterion = nn.CrossEntropyLoss().cuda()
with torch.no_grad():
end = time.perf_counter()
for i, record in enumerate(val_loader):
if len(record) == 2:
inp, target = record
elif len(record) == 3:
inp, target, meta = record
# move to gpu
inp = inp.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = classifier(model(inp))
if indices is not None:
output = output[:,indices]
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), inp.size(0))
top1.update(acc1[0], inp.size(0))
top5.update(acc5[0], inp.size(0))
# measure elapsed time
batch_time.update(time.perf_counter() - end)
end = time.perf_counter()
if args.rank == 0 and i % 50 == 0:
logger.info(
"Epoch[{0}] - Iter: [{1}/{2}]\t"
"Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
"Loss {loss.val:.4f} ({loss.avg:.4f})\t"
"Prec {top1.val:.3f} ({top1.avg:.3f})\t".format(
0,
i,
len(val_loader),
batch_time=batch_time,
loss=losses,
top1=top1,
)
)
scores_val = torch.Tensor(np.array([losses.sum, top1.sum.item(), top5.sum.item(), \
losses.count, top1.count, top5.count])).to(target.get_device())
dist.all_reduce(scores_val, op=dist.ReduceOp.SUM)
scores_val = tuple((scores_val[:3] / scores_val[3:]).detach().cpu().numpy().tolist())
losses, top1, top5 = scores_val
return losses, top1, top5
# def save_feature(loader, model,reglog):
# top1 = AverageMeter()
# top5 = AverageMeter()
# model.eval()
# if reglog is not None:
# reglog.eval()
# rep = []
# corrects = []
# pred = []
# alllogits = []
# targets = []
# with torch.no_grad():
# for i, record in enumerate(loader):
# if len(record) == 2:
# inp, target = record
# elif len(record) == 3:
# inp, target, meta = record
# inp = inp.cuda(non_blocking=True)
# target = target.cuda(non_blocking=True)
# represent = model(inp)
# #print(represent.shape)
# if reglog is not None:
# logits = reglog(represent)
# correct = logits.argmax(axis=1) == target
# corrects.append(correct.detach().cpu().numpy().flatten())
# pred.append(logits.argmax(axis=1).detach().cpu().numpy().flatten())
# alllogits.append(logits.detach().cpu().numpy())
# acc1, acc5 = accuracy(logits, target, topk=(1, 5))
# top1.update(acc1[0], inp.size(0))
# top5.update(acc5[0], inp.size(0))
# if i % 50 == 0:
# print(
# "Epoch[{0}] - Iter: [{1}/{2}]\t"
# "Prec {top1.val:.3f} ({top1.avg:.3f})\t".format(
# 0,
# i,
# len(loader),
# top1=top1,
# )
# )
# targets.append(target.detach().cpu().numpy().flatten())
# rep.append(represent.detach().cpu().numpy())
# rep = np.concatenate(rep, axis=0)
# targets = np.concatenate(targets, axis=0)
# if reglog is not None:
# pred = np.concatenate(pred, axis=0)
# alllogits = np.concatenate(alllogits, axis=0)
# corrects = np.concatenate(corrects)
# return targets, rep, corrects, pred, alllogits, top1.avg.item(), top5.avg.item()
# return targets, rep, None, None, None, 0, 0
def custom_params():
parser = argparse.ArgumentParser(description="Evaluate models: Linear classification on ImageNet")
#########################
#### main parameters ####
#########################
parser.add_argument("--config", type=str, default=None,
help="yaml config path")
parser.add_argument("--dump_path", type=str, default=".",
help="experiment dump path for checkpoints and log")
parser.add_argument("--seed", type=int, default=31, help="seed")
parser.add_argument("--data_path", type=str, default="data/imagenet",
help="path to dataset repository")
parser.add_argument("--data_name", type=str, default="imagenet1k",
help="name of datasets [imagenet1k,]")
parser.add_argument("--tf_name", type=str, default="eval",
help="name of datasets transform [eval,224px,284px]")
parser.add_argument("--workers", default=8, type=int,
help="number of data loading workers")
parser.add_argument("--data_rate", default=1, type=float,
help="rate of data to use")
parser.add_argument("--reweight_path", default=None, type=str, help='path to reweight file')
parser.add_argument("--custom_eval_func", nargs='*', default=None, type=str, help='custom evaluation function')
#########################
#### model parameters ###
#########################
parser.add_argument("--tag", default=None, type=str, help='a tag help load --arch, --pretrained parameters')
parser.add_argument("--arch", default="resnet50", nargs='*', type=str, help="convnet architecture")
parser.add_argument("--pretrained", default="", nargs='*', type=str, help="path to pretrained weights")
#parser.add_argument("--fix1st_pretrained", default="", type=str, help="path to pretrained weights (1st layer). only for *fix1st model")
#parser.add_argument('--dist_clf', default=False, type=bool_flag,help='use cosine classifier or not ')
parser.add_argument('--skip_pool', default=False, type=bool_flag,help='skip pool or not ')
parser.add_argument("--use_bn", default=False, type=bool_flag, help="optionally add a batchnorm layer before the linear classifier")
parser.add_argument('--classifier', default='linear', type=str, help='classifier [linear, convpoollinear_k]')
parser.add_argument('--richway', default='cat', type=str, help='[cat]')
parser.add_argument('--headinit', default='none', type=str, help='init head: none, dumped_weights, cat_weights, normal')
parser.add_argument('--headpretrained', default=None, nargs='*',type=str, help='path to dumped head weights. It is activate when --headcatinit is dumped_weight')
parser.add_argument('--exp_mode', default='lineareval', type=str, help='lineareval, finetune')
parser.add_argument('--mode', default='train', type=str, help='train, eval_only, save_val_prob')
#parser.add_argument("--reinit_head", default=True, type=bool_flag, help="")
parser.add_argument('--sync_bn', default=False, type=bool_flag,help='sync_bn')
#########################
#### optim parameters ###
########jvihnrbutvvthiguleudcchcjrknunbc#################
parser.add_argument("--optimizer", default='sgd', type=str, help='sgd, adam')
parser.add_argument("--wd", default=5e-4, type=float, help="weight decay")
parser.add_argument("--wd_skip_bn", default=False, type=bool_flag, help="")
#parser.add_argument("--nesterov", default=True, type=bool_flag, help="nesterov momentum")
parser.add_argument("--nesterov", default=False, type=bool_flag, help="nesterov momentum") #March 7th, 2023. change the default value to False
parser.add_argument("--momentum", default=0.9, type=float, help="momentum in SGD, beta1 in adam")
parser.add_argument("--beta2", default=0.99, type=float, help="beta2 in adam")
parser.add_argument("--epochs", default=28, type=int,
help="number of total epochs to run")
parser.add_argument("--batch_size", default=32, type=int,
help="batch size per gpu, i.e. how many unique instances per gpu")
parser.add_argument("--lr", default=0.01, type=float, help="initial learning rate")
parser.add_argument("--lr_last_layer", default=None, type=float, help="initial learning rate")
parser.add_argument("--scheduler_type", default="step", type=str, choices=["step", "cosine"])
# for multi-step learning rate decay
parser.add_argument("--decay_epochs", type=int, nargs="+", default=[8, 16, 24],
help="Epochs at which to decay learning rate.")
parser.add_argument("--gamma", type=float, default=0.1, help="decay factor")
# for cosine learning rate schedule
parser.add_argument("--final_lr", type=float, default=0, help="final learning rate")
parser.add_argument("--eval_freq", default=1, type=int, help="frequency to do evaluation")
parser.add_argument("--save_freq", default=999, type=int, help="frequency to save checkpoint_epochi.pth.tar")
parser.add_argument("--save_init", default=False, type=bool_flag, help="save weights initialization")
#########################
#### dist parameters ###
#########################
parser.add_argument("--dist_url", default="env://", type=str,
help="url used to set up distributed training")
parser.add_argument("--world_size", default=-1, type=int, help="""
number of processes: it is set automatically and
should not be passed as argument""")
parser.add_argument("--rank", default=0, type=int, help="""rank of this process:
it is set automatically and should not be passed as argument""")
# parser.add_argument("--local_rank", default=0, type=int,
# help="this argument is not used and should be ignored")
parser.add_argument('--debug',action='store_true', help='debug mode')
parser.add_argument('--gpu', default=None, type=int, help='gpu to use')
parser.add_argument('--cuda_deterministic', action='store_true',help='cuda deterministic. slow but deterministic')
#########################
#### slurm parameters ###
#########################
parser = add_slurm_params(parser)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = custom_params()
main(args)