-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrn50wide.sh
41 lines (33 loc) · 1.12 KB
/
rn50wide.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --gpus-per-node=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=8
#SBATCH --job-name=cifar_supervised_rn50wide_lineareval_bn
#SBATCH --time=8:00:00
#SBATCH --array=0-47
#SBATCH --mem=64G
i=0;
for wd in 1e-6 1e-5 1e-4;
do
for model in resnet50w4 resnet50w2 2resnet50 4resnet50;
do
for data in inaturalist18;
do
wds[$i]=$wd;
models[$i]=$model;
datas[$i]=$data;
i=$(($i+1));
done
done
done
final_model=${models[$SLURM_ARRAY_TASK_ID]}
final_data=${datas[$SLURM_ARRAY_TASK_ID]}
final_wd=${wds[$SLURM_ARRAY_TASK_ID]}
resdir=results/supervised/imagenet/transfer/lineareval_seer/${final_data}_${final_wd}/${final_model}/
mkdir ${resdir} -p
srun --output=${EXPERIMENT_PATH}/%j.out --error=${EXPERIMENT_PATH}/%j.err python supervised.py --dump_path ${resdir} \
--tag supervisedimagenet_${final_model} \
--data_name ${final_data} --classifier linear --batch_size 32 --data_path data/inaturalist18 --wd ${final_wd} \
--exp_mode lineareval --nesterov True --wd_skip_bn True \
--headinit normal --use_bn True --eval_freq 1 --sync_bn True || scontrol requeue $SLURM_JOB_ID