-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
Copy pathbellman_ford.cpp
118 lines (102 loc) · 3 KB
/
bellman_ford.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include <climits>
#include <iostream>
#include <vector>
using namespace std;
// Wrapper class for storing an edge
class Edge {
public:
int src, dst, weight;
};
// Wrapper class for storing a graph
class Graph {
public:
int vertexNum, edgeNum;
std::vector<Edge> edges;
// Constructs a graph with V vertices and E edges
Graph(int V, int E) {
this->vertexNum = V;
this->edgeNum = E;
this->edges.reserve(E);
}
// Adds the given edge to the graph
void addEdge(int src, int dst, int weight) {
static int edgeInd = 0;
if (edgeInd < this->edgeNum) {
Edge newEdge;
newEdge.src = src;
newEdge.dst = dst;
newEdge.weight = weight;
this->edges[edgeInd++] = newEdge;
}
}
};
// Utility function to print distances
void print(const std::vector<int>& dist, int V) {
cout << "\nVertex Distance" << endl;
for (int i = 0; i < V; i++) {
if (dist[i] != INT_MAX)
cout << i << "\t" << dist[i] << endl;
else
cout << i << "\tINF" << endl;
}
}
// The main function that finds the shortest path from given source
// to all other vertices using Bellman-Ford.It also detects negative
// weight cycle
void BellmanFord(Graph graph, int src) {
int V = graph.vertexNum;
int E = graph.edgeNum;
std::vector<int> dist;
dist.reserve(E);
// Initialize distances array as INF for all except source
// Intialize source as zero
for (int i = 0; i < V; i++) dist[i] = INT_MAX;
dist[src] = 0;
// Calculate shortest path distance from source to all edges
// A path can contain maximum (|V|-1) edges
for (int i = 0; i <= V - 1; i++)
for (int j = 0; j < E; j++) {
int u = graph.edges[j].src;
int v = graph.edges[j].dst;
int w = graph.edges[j].weight;
if (dist[u] != INT_MAX && dist[u] + w < dist[v])
dist[v] = dist[u] + w;
}
// Iterate inner loop once more to check for negative cycle
for (int j = 0; j < E; j++) {
int u = graph.edges[j].src;
int v = graph.edges[j].dst;
int w = graph.edges[j].weight;
if (dist[u] != INT_MAX && dist[u] + w < dist[v]) {
cout << "Graph contains negative weight cycle. Hence, shortest "
"distance not guaranteed."
<< endl;
return;
}
}
print(dist, V);
return;
}
// Driver Function
int main() {
int V, E, gsrc;
int src, dst, weight;
cout << "Enter number of vertices: ";
cin >> V;
cout << "Enter number of edges: ";
cin >> E;
Graph G(V, E);
for (int i = 0; i < E; i++) {
cout << "\nEdge " << i + 1 << "\nEnter source: ";
cin >> src;
cout << "Enter destination: ";
cin >> dst;
cout << "Enter weight: ";
cin >> weight;
G.addEdge(src, dst, weight);
}
cout << "\nEnter source: ";
cin >> gsrc;
BellmanFord(G, gsrc);
return 0;
}