-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChatbot.py
259 lines (224 loc) Β· 9.13 KB
/
Chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import getpass
import gradio as gr
from typing import Sequence
from typing_extensions import Annotated, TypedDict
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import (
HumanMessage,
AIMessage,
trim_messages,
BaseMessage,
)
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, StateGraph
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_mongodb.chat_message_histories import MongoDBChatMessageHistory
from langgraph.graph.message import add_messages
# Define the State Schema
"""
A state schema is like a blueprint that defines how we organize and store
information in our chatbot. It helps the chatbot keep track of important details,
such as the messages exchanged and other constraints.
Messages: This is a list holding all messages that have been sent and received
during the conversation. One can think of each message as a piece of the chat history.
Language: This is a simple text field that stores the user's preferred language
for communication. This is to ensure that the chatbot answers back in the correct language.
"""
class State(TypedDict):
messages: Annotated[Sequence[BaseMessage], add_messages]
language: str
# Configure the AI Model
"""
initialize chatbot's core functionalities
"""
class Model:
def __init__(self):
self.model = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
google_api_key = os.getenv("GOOGLE_API_KEY")
)
# Define Prompt Template
"""
The chatbot uses a prompt template to define its behavior
"""
self.prompt_template = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant. Answer all questions to the best of your ability in {language}.",
),
MessagesPlaceholder(variable_name="messages"),
]
)
# Implement the Workflow
"""
1. self.workflow = StateGraph(state_schema=State)
This line creates a new workflow called workflow using a `StateGraph`. A StateGraph is a structure that helps in
managing the flow of data and actions in a program. The `state_schema=State` part means that the workflow will use a
specific format or structure for the data it will handle, defined by `State`.
2. self.workflow.add_edge(START, "model")
Here, an "edge" which is similar to a connection or a path is added to the workflow.
3. self.workflow.add_node("model", self.call_model)
This line introduces a new "node" (which is a specific task or function) into the workflow.
4. self.memory = MemorySaver()
This line establishes a memory storage system called memory with the MemorySaver.
5. self.app = self.workflow.compile(checkpointer=self.memory)
this line compiles the workflow into a runnable application called app.
checkpointer=self.memory part means that the workflow will use the MemorySaver to keep track of its state while it runs.
"""
self.workflow = StateGraph(state_schema=State)
self.workflow.add_edge(START, "model")
self.workflow.add_node("model", self.call_model)
self.memory = MemorySaver()
self.app = self.workflow.compile(checkpointer=self.memory)
# Setup Trimmer
"""
`self.trimmer` to handle message histories
"""
self.trimmer = trim_messages(
max_tokens=65,
strategy="last",
token_counter=self.model,
include_system=True,
allow_partial=False,
start_on="human",
)
#Call the AI Model
"""
`call_model` function processes inputs, generates responses, and updates memory
"""
def call_model(self, state: State):
if not state["messages"] or len(state["messages"]) == 1:
state["messages"] = self.chat_message_history.messages + state["messages"]
print(state["messages"])
trimmed_messages = self.trimmer.invoke(state["messages"])
prompt = self.prompt_template.invoke(
{"messages": trimmed_messages, "language": state["language"]}
)
response = self.model.invoke(prompt)
self.chat_message_history.add_user_message(prompt.messages[-1].content)
self.chat_message_history.add_ai_message(response.content)
return {"messages": [response]}
def invoke(self, query, config, chat_message_history):
self.chat_message_history = chat_message_history
input_messages = [HumanMessage(query)]
response = self.app.invoke(
{"messages": input_messages, "language": "en"}, config
)
return response["messages"][-1].content
# Create Chat Interface Class
class ChatInterface:
def __init__(self):
self.model = Model()
self.active_users = {}
def get_chat_history(self, user_id):
return MongoDBChatMessageHistory(
session_id=user_id,
connection_string=os.getenv("Mongo_URI"),
database_name="Chatbot",
collection_name="chat_histories",
)
def chat(self, message, history, user_id, language="English"):
try:
if not user_id:
return "", history, "Please enter a user ID first."
config = {"configurable": {"thread_id": user_id}}
chat_history = self.get_chat_history(user_id)
response = self.model.invoke(message, config, chat_history)
return "", history + [(message, response)], ""
except Exception as e:
return "", history, f"Error: {str(e)}"
def reset_chat(self, user_id):
try:
if not user_id:
return None, "Please enter a user ID first"
chat_history = self.get_chat_history(user_id)
chat_history.clear()
return None, f"Chat history cleared for user {user_id}"
except Exception as e:
return None, f"Error clearing chat: {str(e)}"
# Create the Gradio Interface
def create_gradio_interface():
chat_interface = ChatInterface()
custom_css = """
.gradio-container {
max-width: 800px !important;
margin: auto !important;
padding: 20px !important;
background-color: #f7f7f7 !important;
}
.chat-message {
padding: 15px !important;
border-radius: 10px !important;
margin: 5px !important;
}
.message-wrap {
display: flex !important;
flex-direction: column !important;
gap: 10px !important;
}
"""
with gr.Blocks(css="footer {visibility: hidden}") as demo:
with gr.Column(elem_id="chat-container"):
gr.Markdown(
"""
# π€ CareBot - Your Personal Medical AI Assistant
Welcome to your personal Medical AI assistant! Enter your ID and start chatting.
"""
)
with gr.Row():
with gr.Column(scale=3):
user_id = gr.Textbox(
label="π User ID",
placeholder="Enter Your User ID",
elem_id="user-id"
)
with gr.Column(scale=1):
language = gr.Dropdown(
choices=["English", "Spanish", "French", "German", "Chinese"],
value="English",
label="π Language",
elem_id="language"
)
chatbot = gr.Chatbot(
label="π¬ Chat History",
height=500,
bubble_full_width=False,
show_label=True,
elem_id="chatbot"
)
with gr.Row():
msg = gr.Textbox(
label="βοΈ Message",
placeholder="Type your message here...",
show_label=True,
elem_id="message"
)
submit = gr.Button("π Send", variant="primary")
clear = gr.Button("ποΈ Clear Chat", variant="secondary")
status_msg = gr.Markdown("")
# Event handlers
submit.click(
fn=chat_interface.chat,
inputs=[msg, chatbot, user_id, language],
outputs=[msg, chatbot, status_msg]
)
msg.submit(
fn=chat_interface.chat,
inputs=[msg, chatbot, user_id, language],
outputs=[msg, chatbot, status_msg]
)
clear.click(
fn=chat_interface.reset_chat,
inputs=[user_id],
outputs=[chatbot, status_msg]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True)