-
Notifications
You must be signed in to change notification settings - Fork 771
/
Copy pathface_detect_aligner.cc
142 lines (120 loc) · 5.87 KB
/
face_detect_aligner.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// Tencent is pleased to support the open source community by making TNN available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "face_detect_aligner.h"
#include "tnn/utils/dims_vector_utils.h"
#include "blazeface_detector.h"
#include "tnn_sdk_sample.h"
#include "youtu_face_align.h"
namespace TNN_NS {
Status FaceDetectAligner::Init(std::vector<std::shared_ptr<TNNSDKSample>> sdks) {
if (sdks.size() < 3) {
return Status(TNNERR_INST_ERR, "FaceDetectAligner::Init has invalid sdks, its size < 3");
}
predictor_detect_ = sdks[0];
predictor_align_phase1_ = sdks[1];
predictor_align_phase2_ = sdks[2];
return TNNSDKComposeSample::Init(sdks);
}
Status FaceDetectAligner::Predict(std::shared_ptr<TNNSDKInput> sdk_input,
std::shared_ptr<TNNSDKOutput> &sdk_output) {
Status status = TNN_OK;
if (!sdk_input || sdk_input->IsEmpty()) {
status = Status(TNNERR_PARAM_ERR, "input image is empty ,please check!");
LOGE("input image is empty ,please check!\n");
return status;
}
auto predictor_detect_async = predictor_detect_;
auto predictor_align_phase1_async = predictor_align_phase1_;
auto predictor_align_phase2_async = predictor_align_phase2_;
auto predictor_align1_cast = dynamic_cast<YoutuFaceAlign *>(predictor_align_phase1_async.get());
auto predictor_align2_cast = dynamic_cast<YoutuFaceAlign *>(predictor_align_phase2_async.get());
auto image_mat = sdk_input->GetMat();
const int image_orig_height = image_mat->GetHeight();
const int image_orig_width = image_mat->GetWidth();
// output of each model
std::shared_ptr<TNNSDKOutput> sdk_output_face = nullptr;
std::shared_ptr<TNNSDKOutput> sdk_output1 = nullptr;
std::shared_ptr<TNNSDKOutput> sdk_output2 = nullptr;
std::shared_ptr<TNN_NS::Mat> phase1_pts = nullptr;
//phase1 model
{
// 1) prepare input for phase1 model
if(!has_prev_face_) {
// i) get face from detector
auto facedetector_input_dims = predictor_detect_->GetInputShape();
//preprocess
auto input_mat = std::make_shared<TNN_NS::Mat>(image_mat->GetDeviceType(), image_mat->GetMatType(), facedetector_input_dims);
status = predictor_detect_async->Resize(image_mat, input_mat, TNNInterpLinear);
RETURN_ON_NEQ(status, TNN_OK);
status = predictor_detect_async->Predict(std::make_shared<BlazeFaceDetectorInput>(input_mat), sdk_output_face);
RETURN_ON_NEQ(status, TNN_OK);
std::vector<BlazeFaceInfo> face_info;
if (sdk_output_face && dynamic_cast<BlazeFaceDetectorOutput *>(sdk_output_face.get()))
{
auto face_output = dynamic_cast<BlazeFaceDetectorOutput *>(sdk_output_face.get());
face_info = face_output->face_list;
}
if(face_info.size() <= 0) {
//no faces, return
LOGD("Error no faces found!\n");
return status;
}
auto face = face_info[0];
// scale the face point according to the original image size
auto face_orig = face.AdjustToViewSize(image_orig_height, image_orig_width, 2);
LOGD("face_origin:(%f,%f,%f,%f), conf=%.4f\n", face_orig.x1, face_orig.y1, face_orig.x2, face_orig.y2, face_orig.score);
// set face region for phase1 model
if (!(predictor_align1_cast &&
predictor_align1_cast->SetFaceRegion(face_orig.x1, face_orig.y1, face_orig.x2, face_orig.y2))) {
//no invalid faces, return
LOGD("Error no valid faces found!\n");
return status;
}
}
// 2) predict
status = predictor_align1_cast->Predict(std::make_shared<YoutuFaceAlignInput>(image_mat), sdk_output1);
RETURN_ON_NEQ(status, TNN_OK);
// update prev_face
has_prev_face_ = predictor_align1_cast->GetPrevFace();
if(!has_prev_face_) {
LOGD("Next frame will use face detector!\n");
}
phase1_pts = predictor_align1_cast->GetPrePts();
}
//phase 2
std::shared_ptr<TNN_NS::Mat> phase2_pts = nullptr;
//phase2 model
{
// 1) prepare phase1 pts
predictor_align2_cast->SetPrePts(phase1_pts, true);
// 2) predict
status = predictor_align2_cast->Predict(std::make_shared<YoutuFaceAlignInput>(image_mat), sdk_output2);
RETURN_ON_NEQ(status, TNN_OK);
phase2_pts = predictor_align2_cast->GetPrePts();
}
{
sdk_output = std::make_shared<YoutuFaceAlignOutput>();
auto phase1_output = dynamic_cast<YoutuFaceAlignOutput *>(sdk_output1.get());
auto phase2_output = dynamic_cast<YoutuFaceAlignOutput *>(sdk_output2.get());
auto& points = phase1_output->face.key_points;
auto& points_phase2 = phase2_output->face.key_points;
points.insert(points.end(), points_phase2.begin(), points_phase2.end());
auto output = dynamic_cast<YoutuFaceAlignOutput *>(sdk_output.get());
output->face.key_points = points;
output->face.image_height = image_orig_height;
output->face.image_width = image_orig_width;
}
return TNN_OK;
}
}