-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_attention_wo_GIF-GAT.py
241 lines (207 loc) · 8.81 KB
/
train_attention_wo_GIF-GAT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import argparse
import logging
import os
import random
import shutil
import numpy as np
import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import sys
sys.path.append('..')
import utils as utils
from data.loader import data_loader_panda
from models import AttentionFieldGenerator_WO_GAT
from utils import (
l2_loss,
angle_difference,
relative_to_abs
)
# Argument parsing
parser = argparse.ArgumentParser()
# frequently modified
parser.add_argument("--obs_len", default=9, type=int)
parser.add_argument("--pred_len", default=9, type=int)
parser.add_argument("--batch_size", default=1024, type=int)
parser.add_argument("--num_epochs", default=300, type=int)
parser.add_argument("--lr", default=1e-3, type=float, metavar="LR", help="initial learning rate", dest="lr")
parser.add_argument("--neib_dist_thres", default=10, type=float)
parser.add_argument('--use_traj', action='store_true', default=True)
parser.add_argument('--half_data', action='store_true', default=False)
parser.add_argument("--dataset_mode", type=str, default="")
parser.add_argument("--feat_coef", default=1, type=float)
parser.add_argument("--lstm_layers", default=1, type=int)
# other settings
parser.add_argument("--log_dir", default="./", help="Directory containing logging file")
parser.add_argument("--loader_num_workers", default=0, type=int)
parser.add_argument("--seed", type=int, default=42, help="Random seed.")
parser.add_argument("--face_lstm_input_size", type=int, default=2)
parser.add_argument("--face_lstm_hidden_size", default=32, type=int)
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="manual epoch number (useful on restarts)")
parser.add_argument("--print_every", default=10, type=int)
parser.add_argument("--use_gpu", default=1, type=int)
parser.add_argument("--gpu_num", default="0", type=str)
parser.add_argument("--resume", default="", type=str, metavar="PATH", help="path to latest checkpoint (default: none)")
parser.add_argument("--model_save_name", default="best_attention_wo_gat", type=str)
best_ade = 100
debug_mode = False
def main(args):
# fix all seeds
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_num
logging.info("Initializing train dataset")
train_dset, train_loader = data_loader_panda(args,
mode='{}_train'.format(args.dataset_mode) if
args.dataset_mode else 'train',
specific_angle=0,
only_neib_in_state=None)
logging.info("Initializing val dataset")
_, val_loader = data_loader_panda(args,
mode='{}_val'.format(args.dataset_mode) if
args.dataset_mode else 'val',
specific_angle=0,
only_neib_in_state=None)
if not debug_mode:
writer = SummaryWriter()
else:
writer = None
model = AttentionFieldGenerator_WO_GAT(
obs_len=args.obs_len,
pred_len=args.pred_len,
face_lstm_input_size=args.face_lstm_input_size,
face_lstm_hidden_size=args.face_lstm_hidden_size,
use_traj=args.use_traj,
feat_concat_samp_coef=args.feat_coef,
lstm_layers=args.lstm_layers
)
model.cuda()
optimizer = optim.Adam([{"params": model.parameters()}], lr=args.lr)
global best_ade
for epoch in range(args.start_epoch, args.num_epochs + 1):
if epoch < 100:
training_step = 1
else:
if epoch == 100:
for param_group in optimizer.param_groups:
param_group["lr"] = 2e-4
if epoch == 200:
for param_group in optimizer.param_groups:
param_group["lr"] = 1e-4
training_step = 2
train(args, model, train_loader, optimizer, epoch, training_step, writer)
# validate(model, train_loader, epoch, writer, training_step=training_step, loader='train')
ade = validate(model, val_loader, epoch, writer, training_step=training_step)
if training_step == 2 and not debug_mode:
is_best = ade < best_ade
best_ade = min(ade, best_ade)
save_checkpoint(args,
{
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"best_ade": best_ade,
"optimizer": optimizer.state_dict(),
},
is_best,
f"./checkpoint/checkpoint{epoch}.pth.tar",
)
if not debug_mode:
writer.close()
def train(args, model, train_loader, optimizer, epoch, training_step, writer):
losses_face = utils.AverageMeter("Loss_face", ":.6f")
progress = utils.ProgressMeter(
len(train_loader), [losses_face], prefix="Epoch: [{}]".format(epoch)
)
model.train()
for batch_idx, batch in enumerate(train_loader):
batch = [[t.cuda() for t in tensor] if isinstance(tensor, list) else tensor.cuda() for tensor in batch]
(
obs_traj,
pred_traj_gt,
obs_traj_rel,
pred_traj_gt_rel,
obs_face,
pred_face,
obs_face_rel,
pred_face_rel,
loss_mask,
neib_seq_list_rel,
neib_seq_list_self,
neib_face_list_abs,
neib_face_list_rel,
group_states,
inte_states
) = batch
optimizer.zero_grad()
loss = torch.zeros(1).to(pred_traj_gt)
l2_loss_face = []
pred_ori_fake = model(obs_traj_rel,
obs_face_rel,
training_step)
l2_loss_face = l2_loss(pred_ori_fake, pred_face_rel, loss_mask, mode="raw")
l2_loss_sum_face = torch.zeros(1).to(pred_face_rel)
_l2_loss_face = torch.sum(l2_loss_face)
l2_loss_sum_face += _l2_loss_face
loss += l2_loss_sum_face[0]
losses_face.update(l2_loss_sum_face[0], obs_face.shape[1]) # batch_size
loss.backward()
optimizer.step()
if batch_idx % args.print_every == 0:
progress.display(batch_idx)
if not debug_mode:
writer.add_scalar("train_loss_face", losses_face.avg, epoch)
def validate(model, val_loader, epoch, writer, training_step, loader='val'):
angle_diff_outer = []
total_face = 0
model.eval()
with torch.no_grad():
for i, batch in enumerate(val_loader):
batch = [[t.cuda() for t in tensor] if isinstance(tensor, list) else tensor.cuda() for tensor in batch]
(
obs_traj,
pred_traj_gt,
obs_traj_rel,
pred_traj_gt_rel,
obs_face,
pred_face,
obs_face_rel,
pred_face_rel,
loss_mask,
neib_seq_list_rel,
neib_seq_list_self,
neib_face_list_abs,
neib_face_list_rel,
group_states,
inte_states
) = batch
total_face += pred_traj_gt.size(1)
pred_ori_fake_rel = model(obs_traj_rel,
obs_face_rel,
training_step)
pred_ori_fake_rel_predpart = pred_ori_fake_rel[-args.pred_len:]
pred_ori_fake = relative_to_abs(pred_ori_fake_rel_predpart, obs_face[-1])
angle_diff_sum = cal_angle_diff(pred_face, pred_ori_fake)
angle_diff_outer.append(angle_diff_sum)
angle_diff = sum(angle_diff_outer) / (total_face * args.pred_len)
logging.info(" * {loader} Angle diff {angle_diff:.3f}".format(loader=loader, angle_diff=angle_diff))
if not debug_mode:
writer.add_scalar("{}_angle_diff".format(loader), angle_diff, epoch)
return angle_diff
def cal_angle_diff(pred_face_gt, pred_face_fake):
angle_diff = angle_difference(pred_face_fake, pred_face_gt)
return angle_diff
def save_checkpoint(args, state, is_best, filename="checkpoint.pth.tar"):
if is_best:
torch.save(state, filename)
logging.info("-------------- lower ade ----------------")
shutil.copyfile(filename, "{}.pth.tar".format(args.model_save_name))
if __name__ == "__main__":
args = parser.parse_args()
utils.set_logger(os.path.join(args.log_dir, "train.log"))
checkpoint_dir = "./checkpoint"
if os.path.exists(checkpoint_dir) is False:
os.mkdir(checkpoint_dir)
main(args)