-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_proxemics_field.py
209 lines (180 loc) · 7.92 KB
/
evaluate_proxemics_field.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import logging
import os
import random
import numpy as np
import torch
from data.loader import data_loader_panda
from models import ProxemicsFieldGenerator
from utils import (
displacement_error,
final_displacement_error,
int_tuple,
relative_to_abs,
)
# Argument parsing
parser = argparse.ArgumentParser()
parser.add_argument("--obs_len", default=9, type=int)
parser.add_argument("--pred_len", default=9, type=int)
parser.add_argument("--batch_size", default=1024, type=int)
parser.add_argument("--num_samples", default=20, type=int)
parser.add_argument("--loader_num_workers", default=0, type=int)
parser.add_argument("--seed", type=int, default=42, help="Random seed.")
parser.add_argument("--noise_dim", default=(16,), type=int_tuple)
parser.add_argument("--noise_type", default="gaussian")
parser.add_argument("--traj_lstm_input_size", type=int, default=2, help="traj_lstm_input_size")
parser.add_argument("--traj_lstm_hidden_size", default=32, type=int)
parser.add_argument("--heads", type=str, default="4,1", help="Heads in each layer, splitted with comma")
parser.add_argument("--hidden-units", type=str, default="16", help="Hidden units in each hidden layer, ',' split")
parser.add_argument("--graph_network_out_dims", type=int, default=32, help="dims of every node after GAT module")
parser.add_argument("--graph_lstm_hidden_size", default=32, type=int)
parser.add_argument("--dropout", type=float, default=0.2, help="Dropout rate (1 - keep probability).")
parser.add_argument("--alpha", type=float, default=0.2, help="Alpha for the leaky_relu.")
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="manual epoch number (useful on restarts)")
parser.add_argument("--print_every", default=10, type=int)
parser.add_argument("--use_gpu", default=1, type=int)
parser.add_argument("--gpu_num", default="0", type=str)
parser.add_argument("--neib_dist_thres", default=10, type=float)
parser.add_argument("--only_neib_in_state", type=str, default="inte")
parser.add_argument("--graph_mode", type=str, default="gat")
parser.add_argument('--use_face', action='store_true', default=True)
parser.add_argument('--half_data', action='store_true', default=False)
parser.add_argument("--dataset_mode", type=str, default="")
parser.add_argument("--feat_coef", default=1, type=float)
parser.add_argument(
"--model-load-path",
default="./dataset/GIF_Dataset/checkpoints/proxemics/GIFNet_proxemics.pth.tar",
type=str,
help="path to latest checkpoint",
)
parser.add_argument(
"--save-path",
default="./dataset/GIF_Dataset/predictions/proxemics/pred.npy",
type=str,
help="path to save output prediction",
)
def evaluate_helper(error, mode='avg'):
error = torch.stack(error, dim=0)
if mode == 'avg':
error = torch.sum(error, dim=0) / error.shape[0]
elif mode == 'min':
error = torch.min(error, dim=0).values
return error
def cal_ade_fde(pred_traj_gt, pred_traj_fake, mode='sum'):
ade = displacement_error(pred_traj_fake, pred_traj_gt, mode=mode)
fde = final_displacement_error(pred_traj_fake[-1], pred_traj_gt[-1], mode=mode)
return ade, fde
def main(args):
# fix all seeds
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_num
logging.info("Initializing val dataset")
_, val_loader = data_loader_panda(args,
mode='test',
specific_angle=0,
only_neib_in_state=None if args.only_neib_in_state == ""
else args.only_neib_in_state)
# [32, 16, 32]
n_units = (
[args.traj_lstm_hidden_size]
+ [int(x) for x in args.hidden_units.strip().split(",")]
+ [args.graph_lstm_hidden_size]
)
# [4, 1]
n_heads = [int(x) for x in args.heads.strip().split(",")]
model = ProxemicsFieldGenerator(
obs_len=args.obs_len,
pred_len=args.pred_len,
traj_lstm_input_size=args.traj_lstm_input_size,
traj_lstm_hidden_size=args.traj_lstm_hidden_size,
n_units=n_units,
graph_network_out_dims=args.graph_network_out_dims,
dropout=args.dropout,
graph_lstm_hidden_size=args.graph_lstm_hidden_size,
noise_dim=args.noise_dim,
noise_type=args.noise_type,
n_heads=n_heads,
alpha=args.alpha,
use_face=args.use_face,
graph_mode=args.graph_mode,
feat_concat_samp_coef=args.feat_coef
)
checkpoint = torch.load(args.model_load_path)
model.load_state_dict(checkpoint["state_dict"])
model.cuda()
ade, fde, all_pred = validate(args, model, val_loader)
print("ADE: {:.6f}, FDE: {:.6f}".format(ade, fde))
all_pred = all_pred.transpose((2, 0, 1, 3)) # (n_sample, n_exp, len_pred, feat_dim)
print(all_pred.shape)
np.save(args.save_path, all_pred)
def validate(args, model, val_loader):
all_z = np.load('./dataset/GIF_Dataset/evaluate_z_20.npy')
ade_outer, fde_outer = [], []
total_traj = 0
model.eval()
all_prediction = []
all_ade_raw, all_fde_raw = [], []
with torch.no_grad():
for i, batch in enumerate(val_loader):
print('evaluating:\t{} / {}'.format(i + 1, len(val_loader)))
batch = [[t.cuda() for t in tensor] if isinstance(tensor, list) else tensor.cuda() for tensor in batch]
(
obs_traj,
pred_traj_gt,
obs_traj_rel,
pred_traj_gt_rel,
obs_face,
pred_face,
obs_face_rel,
pred_face_rel,
loss_mask,
neib_seq_list_rel,
neib_seq_list_self,
neib_face_list_abs,
neib_face_list_rel,
group_states,
inte_states
) = batch
ade, fde = [], []
ade_raw, fde_raw = [], []
total_traj += pred_traj_gt.size(1)
cur_batch_pred = []
for exp_time in range(args.num_samples):
pred_traj_fake_rel = model(obs_traj_rel,
obs_traj,
obs_face,
neib_seq_list_rel,
neib_seq_list_self,
neib_face_list_abs,
neib_face_list_rel,
training_step=3,
decoder_z=torch.from_numpy(all_z[exp_time]))
pred_traj_fake_rel_predpart = pred_traj_fake_rel[-args.pred_len:]
pred_traj_fake = relative_to_abs(pred_traj_fake_rel_predpart, obs_traj[-1])
cur_batch_pred.append(pred_traj_fake.cpu().numpy())
ade_, fde_ = cal_ade_fde(pred_traj_gt, pred_traj_fake)
ade.append(ade_)
fde.append(fde_)
raw_ade_, raw_fde_ = cal_ade_fde(pred_traj_gt, pred_traj_fake, mode='raw')
ade_raw.append(raw_ade_.cpu().numpy())
fde_raw.append(raw_fde_.cpu().numpy())
ade_sum = evaluate_helper(ade)
fde_sum = evaluate_helper(fde)
ade_outer.append(ade_sum)
fde_outer.append(fde_sum)
all_ade_raw.append(ade_raw)
all_fde_raw.append(fde_raw)
all_prediction.append(np.stack(cur_batch_pred, axis=0))
print('===============================================')
ade = sum(ade_outer) / (total_traj * args.pred_len)
fde = sum(fde_outer) / total_traj
all_prediction = np.concatenate(all_prediction, axis=2)
print('total traj num: ', total_traj)
return ade, fde, all_prediction
if __name__ == "__main__":
args = parser.parse_args()
main(args)