-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
197 lines (175 loc) · 6.48 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
import torch
import os
from typing import Tuple
from prompt.data_loaders import (
name2datasets,
UNLABELED_SET,
TRAIN_SET,
DEV_SET,
TEST_SET,
METRICS,
DEFAULT_METRICS,
)
from prompt.modules.configs import WrapperConfig
from prompt.utils import set_seed
import prompt.trainers.singleton_trainer as singleton_trainer
import prompt.trainers.configs as promptconfig
import log
import optuna
import optuna.trial as TrialState
logger = log.get_logger("root")
def load_prompt_configs(
args,
) -> Tuple[
WrapperConfig, promptconfig.TrainConfig, promptconfig.EvalConfig, promptconfig.DDPConfig
]:
model_cfg = WrapperConfig(
model_type=args.model_type,
model_name_or_path=args.model_name_or_path,
wrapper_type=args.wrapper_type,
task_name=args.task_name,
label_list=args.label_list,
max_seq_length=args.prompt_max_seq_length,
cache_dir=args.cache_dir,
embed_size=args.embed_size,
hidden_size=args.hidden_size,
prompt_length=args.prompt_length,
prompt_encoder_type=args.prompt_encoder_type,
init_from_vocab=args.init_from_vocab,
output_dir=args.output_dir,
soft_prompt_path=args.soft_prompt_path,
)
train_cfg = promptconfig.TrainConfig(
pattern_lang=args.pattern_lang,
device=args.device,
per_gpu_train_batch_size=args.prompt_per_gpu_train_batch_size,
n_gpu=args.n_gpu,
num_train_epochs=args.prompt_num_train_epochs,
weight_decay=args.weight_decay,
learning_rate=args.learning_rate,
warmup_steps=args.warmup_steps,
max_grad_norm=args.max_grad_norm,
seed=args.seed,
cosda_rate=args.cosda_rate,
)
eval_cfg = promptconfig.EvalConfig(
device=args.device,
n_gpu=args.n_gpu,
metrics=args.metrics,
per_gpu_eval_batch_size=args.prompt_per_gpu_eval_batch_size,
)
ddp_cfg = promptconfig.DDPConfig(
do_ddp=args.do_ddp, num_ranks=args.num_ranks, num_nodes=args.num_nodes
)
return (model_cfg, train_cfg, eval_cfg, ddp_cfg)
def main(args):
logger.info("Experiment Parameters: {}".format(args))
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty.".format(
args.output_dir
)
)
set_seed(args.seed)
args.device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
args.n_gpu = torch.cuda.device_count()
args.task_name = args.task_name.lower()
if args.task_name not in name2datasets:
raise ValueError("Task '{}' not found".format(args.task_name))
data_lang = args.data_lang if args.data_lang else None
dataset = name2datasets[args.task_name](args.num_shots, data_lang)
args.label_list = dataset.get_labels()
args.metrics = METRICS.get(args.task_name, DEFAULT_METRICS)
prompt_model_cfg, prompt_train_cfg, prompt_eval_cfg, ddp_cfg = load_prompt_configs(args)
# def objective(trial):
# acc = singleton_trainer.train_model_per_pattern(
# trial,
# model_config=prompt_model_cfg,
# train_config=prompt_train_cfg,
# eval_config=prompt_eval_cfg,
# ddp_config=ddp_cfg,
# dataset=dataset,
# pattern_ids=args.pattern_ids,
# output_dir=args.output_dir,
# do_train=args.do_train,
# do_eval=args.do_eval,
# dict_dir=args.dict_dir,
# )
# return acc
# if args.num_shots == 1:
# study = optuna.create_study(
# study_name="shot1", storage="sqlite:///shot1.db", direction="maximize", load_if_exists="True"
# )
# elif args.num_shots == 2:
# study = optuna.create_study(
# study_name="shot2", storage="sqlite:///shot2.db", direction="maximize", load_if_exists="True"
# )
# elif args.num_shots == 4:
# study = optuna.create_study(
# study_name="shot4", storage="sqlite:///shot4.db", direction="maximize", load_if_exists="True"
# )
# elif args.num_shots == 8:
# study = optuna.create_study(
# study_name="shot8", storage="sqlite:///shot8.db", direction="maximize", load_if_exists="True"
# )
# elif args.num_shots == 16:
# study = optuna.create_study(
# study_name="shot16", storage="sqlite:///shot16.db", direction="maximize", load_if_exists="True"
# )
# elif args.num_shots == 32:
# study = optuna.create_study(
# study_name="shot32", storage="sqlite:///shot32.db", direction="maximize", load_if_exists="True"
# )
# elif args.num_shots == 64:
# study = optuna.create_study(
# study_name="shot64", storage="sqlite:///shot64.db", direction="maximize", load_if_exists="True"
# )
# elif args.num_shots == 128:
# study = optuna.create_study(
# study_name="shot128", storage="sqlite:///shot128.db", direction="maximize", load_if_exists="True"
# )
# elif args.num_shots == 256:
# study = optuna.create_study(
# study_name="shot256", storage="sqlite:///shot256.db", direction="maximize", load_if_exists="True"
# )
# study.optimize(
# objective,
# n_trials=100
# )
# print("Study statistics: ")
# print(" Number of finished trials: ", len(study.trials))
# trial = study.best_trial
# with open(
# os.path.join(args.output_dir, f"{args.num_shots}_params.txt"), "w"
# ) as fh:
# fh.write("Best trial:\n")
# fh.write(" Value: {}\n".format(trial.value))
# for key, value in trial.params.items():
# fh.write(" {}: {}".format(key, value))
# logger.info("Best trial:")
# logger.info(" Value: {}".format(trial.value))
# logger.info(" Params: ")
# for key, value in trial.params.items():
# logger.info(" {}: {}".format(key, value))
singleton_trainer.train_model_per_pattern(
prompt_model_cfg,
prompt_train_cfg,
prompt_eval_cfg,
ddp_cfg,
dataset=dataset,
pattern_ids=args.pattern_ids,
output_dir=args.output_dir,
do_train=args.do_train,
do_eval=args.do_eval,
dict_dir=args.dict_dir,
)
if __name__ == "__main__":
from parameters import get_args
args = get_args()
main(args)