-
-
Notifications
You must be signed in to change notification settings - Fork 880
/
Copy pathfrontend.py
592 lines (534 loc) · 42.7 KB
/
frontend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import gradio as gr
from frontend.css_and_js import css, js, call_JS, js_parse_prompt, js_copy_txt2img_output
from frontend.job_manager import JobManager
import frontend.ui_functions as uifn
import uuid
def draw_gradio_ui(opt, img2img=lambda x: x, txt2img=lambda x: x,imgproc=lambda x: x, txt2img_defaults={}, RealESRGAN=True, GFPGAN=True,LDSR=True,
txt2img_toggles={}, txt2img_toggle_defaults='k_euler', show_embeddings=False, img2img_defaults={},
img2img_toggles={}, img2img_toggle_defaults={}, sample_img2img=None, img2img_mask_modes=None,
img2img_resize_modes=None, imgproc_defaults={},imgproc_mode_toggles={},user_defaults={}, run_GFPGAN=lambda x: x, run_RealESRGAN=lambda x: x,
job_manager: JobManager = None) -> gr.Blocks:
with gr.Blocks(css=css(opt), analytics_enabled=False, title="Stable Diffusion WebUI") as demo:
with gr.Tabs(elem_id='tabss') as tabs:
with gr.TabItem("Text-to-Image", id='txt2img_tab'):
with gr.Row(elem_id="prompt_row"):
txt2img_prompt = gr.Textbox(label="Prompt",
elem_id='prompt_input',
placeholder="A corgi wearing a top hat as an oil painting.",
lines=1,
max_lines=1 if txt2img_defaults['submit_on_enter'] == 'Yes' else 25,
value=txt2img_defaults['prompt'],
show_label=False)
txt2img_btn = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(elem_id='body').style(equal_height=False):
with gr.Column():
txt2img_width = gr.Slider(minimum=64, maximum=1024, step=64, label="Width",
value=txt2img_defaults["width"])
txt2img_height = gr.Slider(minimum=64, maximum=1024, step=64, label="Height",
value=txt2img_defaults["height"])
txt2img_cfg = gr.Slider(minimum=-40.0, maximum=30.0, step=0.5,
label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)',
value=txt2img_defaults['cfg_scale'], elem_id='cfg_slider')
txt2img_seed = gr.Textbox(label="Seed (blank to randomize)", lines=1, max_lines=1,
value=txt2img_defaults["seed"])
txt2img_batch_count = gr.Slider(minimum=1, maximum=50, step=1,
label='Number of images to generate',
value=txt2img_defaults['n_iter'])
txt2img_job_ui = job_manager.draw_gradio_ui() if job_manager else None
txt2img_dimensions_info_text_box = gr.Textbox(label="Aspect ratio (4:3 = 1.333 | 16:9 = 1.777 | 21:9 = 2.333)")
with gr.Column():
with gr.Box():
output_txt2img_gallery = gr.Gallery(label="Images", elem_id="txt2img_gallery_output").style(grid=[4, 4])
gr.Markdown("Select an image from the gallery, then click one of the buttons below to perform an action.")
with gr.Row(elem_id='txt2img_actions_row'):
gr.Button("Copy to clipboard").click(fn=None,
inputs=output_txt2img_gallery,
outputs=[],
#_js=js_copy_to_clipboard( 'txt2img_gallery_output')
)
output_txt2img_copy_to_input_btn = gr.Button("Push to img2img")
output_txt2img_to_imglab = gr.Button("Send to Lab",visible=True)
output_txt2img_params = gr.Highlightedtext(label="Generation parameters", interactive=False, elem_id='highlight')
with gr.Group():
with gr.Row(elem_id='txt2img_output_row'):
output_txt2img_copy_params = gr.Button("Copy full parameters").click(
inputs=[output_txt2img_params], outputs=[],
_js=js_copy_txt2img_output,
fn=None, show_progress=False)
output_txt2img_seed = gr.Number(label='Seed', interactive=False, visible=False)
output_txt2img_copy_seed = gr.Button("Copy only seed").click(
inputs=[output_txt2img_seed], outputs=[],
_js='(x) => navigator.clipboard.writeText(x)', fn=None, show_progress=False)
output_txt2img_stats = gr.HTML(label='Stats')
with gr.Column():
txt2img_steps = gr.Slider(minimum=1, maximum=250, step=1, label="Sampling Steps",
value=txt2img_defaults['ddim_steps'])
txt2img_sampling = gr.Dropdown(label='Sampling method (k_lms is default k-diffusion sampler)',
choices=["DDIM", "PLMS", 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a',
'k_euler', 'k_heun', 'k_lms'],
value=txt2img_defaults['sampler_name'])
with gr.Tabs():
with gr.TabItem('Simple'):
txt2img_submit_on_enter = gr.Radio(['Yes', 'No'],
label="Submit on enter? (no means multiline)",
value=txt2img_defaults['submit_on_enter'],
interactive=True, elem_id='submit_on_enter')
txt2img_submit_on_enter.change(
lambda x: gr.update(max_lines=1 if x == 'Yes' else 25), txt2img_submit_on_enter,
txt2img_prompt)
with gr.TabItem('Advanced'):
txt2img_toggles = gr.CheckboxGroup(label='', choices=txt2img_toggles,
value=txt2img_toggle_defaults, type="index")
txt2img_batch_size = gr.Slider(minimum=1, maximum=8, step=1,
label='Batch size (how many images are in a batch; memory-hungry)',
value=txt2img_defaults['batch_size'])
txt2img_realesrgan_model_name = gr.Dropdown(label='RealESRGAN model',
choices=['RealESRGAN_x4plus',
'RealESRGAN_x4plus_anime_6B'],
value='RealESRGAN_x4plus',
visible=False)#RealESRGAN is not None # invisible until removed) # TODO: Feels like I shouldnt slot it in here.
txt2img_ddim_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA",
value=txt2img_defaults['ddim_eta'], visible=False)
txt2img_variant_amount = gr.Slider(minimum=0.0, maximum=1.0, label='Variation Amount',
value=txt2img_defaults['variant_amount'])
txt2img_variant_seed = gr.Textbox(label="Variant Seed (blank to randomize)", lines=1,
max_lines=1, value=txt2img_defaults["variant_seed"])
txt2img_embeddings = gr.File(label="Embeddings file for textual inversion",
visible=show_embeddings)
txt2img_func = txt2img
txt2img_inputs = [txt2img_prompt, txt2img_steps, txt2img_sampling, txt2img_toggles,
txt2img_realesrgan_model_name, txt2img_ddim_eta, txt2img_batch_count,
txt2img_batch_size, txt2img_cfg, txt2img_seed, txt2img_height, txt2img_width,
txt2img_embeddings, txt2img_variant_amount, txt2img_variant_seed]
txt2img_outputs = [output_txt2img_gallery, output_txt2img_seed,
output_txt2img_params, output_txt2img_stats]
# If a JobManager was passed in then wrap the Generate functions
if txt2img_job_ui:
txt2img_func, txt2img_inputs, txt2img_outputs = txt2img_job_ui.wrap_func(
func=txt2img_func,
inputs=txt2img_inputs,
outputs=txt2img_outputs
)
txt2img_btn.click(
txt2img_func,
txt2img_inputs,
txt2img_outputs
)
txt2img_prompt.submit(
txt2img_func,
txt2img_inputs,
txt2img_outputs
)
# txt2img_width.change(fn=uifn.update_dimensions_info, inputs=[txt2img_width, txt2img_height], outputs=txt2img_dimensions_info_text_box)
# txt2img_height.change(fn=uifn.update_dimensions_info, inputs=[txt2img_width, txt2img_height], outputs=txt2img_dimensions_info_text_box)
live_prompt_params = [txt2img_prompt, txt2img_width, txt2img_height, txt2img_steps, txt2img_seed, txt2img_batch_count, txt2img_cfg]
txt2img_prompt.change(
fn=None,
inputs=live_prompt_params,
outputs=live_prompt_params,
_js=js_parse_prompt
)
with gr.TabItem("Image-to-Image Unified", id="img2img_tab"):
with gr.Row(elem_id="prompt_row"):
img2img_prompt = gr.Textbox(label="Prompt",
elem_id='img2img_prompt_input',
placeholder="A fantasy landscape, trending on artstation.",
lines=1,
max_lines=1 if txt2img_defaults['submit_on_enter'] == 'Yes' else 25,
value=img2img_defaults['prompt'],
show_label=False).style()
img2img_btn_mask = gr.Button("Generate", variant="primary", visible=False,
elem_id="img2img_mask_btn")
img2img_btn_editor = gr.Button("Generate", variant="primary", elem_id="img2img_edit_btn")
with gr.Row().style(equal_height=False):
with gr.Column():
with gr.Tabs():
with gr.TabItem("Img2Img Input"):
#gr.Markdown('#### Img2Img Input')
img2img_image_editor = gr.Image(value=sample_img2img, source="upload", interactive=True,
type="pil", tool="select", elem_id="img2img_editor",
image_mode="RGBA")
img2img_image_mask = gr.Image(value=sample_img2img, source="upload", interactive=True,
type="pil", tool="sketch", visible=False,
elem_id="img2img_mask")
with gr.TabItem("Img2Img Mask Input"):
img2img_mask_input = gr.Image(label="Mask",source="upload", interactive=False,
type="pil", visible=True)
with gr.Tabs():
with gr.TabItem("Editor Options"):
with gr.Row():
img2img_image_editor_mode = gr.Radio(choices=["Mask", "Crop", "Uncrop"], label="Image Editor Mode",
value="Crop", elem_id='edit_mode_select')
img2img_mask = gr.Radio(choices=["Keep masked area", "Regenerate only masked area"],
label="Mask Mode", type="index",
value=img2img_mask_modes[img2img_defaults['mask_mode']], visible=False)
img2img_mask_blur_strength = gr.Slider(minimum=1, maximum=10, step=1,
label="How much blurry should the mask be? (to avoid hard edges)",
value=3, visible=False)
img2img_resize = gr.Radio(label="Resize mode",
choices=["Just resize", "Crop and resize", "Resize and fill"],
type="index",
value=img2img_resize_modes[img2img_defaults['resize_mode']])
img2img_painterro_btn = gr.Button("Advanced Editor")
with gr.TabItem("Hints"):
img2img_help = gr.Markdown(visible=False, value=uifn.help_text)
with gr.Column():
gr.Markdown('#### Img2Img Results')
output_img2img_gallery = gr.Gallery(label="Images", elem_id="img2img_gallery_output").style(grid=[4,4,4])
img2img_job_ui = job_manager.draw_gradio_ui() if job_manager else None
with gr.Tabs():
with gr.TabItem("Generated image actions", id="img2img_actions_tab"):
gr.Markdown("Select an image, then press one of the buttons below")
with gr.Row():
output_img2img_copy_to_clipboard_btn = gr.Button("Copy to clipboard")
output_img2img_copy_to_input_btn = gr.Button("Push to img2img input")
output_img2img_copy_to_mask_btn = gr.Button("Push to img2img input mask")
gr.Markdown("Warning: This will clear your current image and mask settings!")
with gr.TabItem("Output info", id="img2img_output_info_tab"):
output_img2img_params = gr.Textbox(label="Generation parameters")
with gr.Row():
output_img2img_copy_params = gr.Button("Copy full parameters").click(
inputs=output_img2img_params, outputs=[],
_js='(x) => {navigator.clipboard.writeText(x.replace(": ",":"))}', fn=None, show_progress=False)
output_img2img_seed = gr.Number(label='Seed', interactive=False, visible=False)
output_img2img_copy_seed = gr.Button("Copy only seed").click(
inputs=output_img2img_seed, outputs=[],
_js=call_JS("gradioInputToClipboard"), fn=None, show_progress=False)
output_img2img_stats = gr.HTML(label='Stats')
gr.Markdown('# img2img settings')
with gr.Row():
with gr.Column():
img2img_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width",
value=img2img_defaults["width"])
img2img_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height",
value=img2img_defaults["height"])
img2img_cfg = gr.Slider(minimum=-40.0, maximum=30.0, step=0.5,
label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)',
value=img2img_defaults['cfg_scale'], elem_id='cfg_slider')
img2img_seed = gr.Textbox(label="Seed (blank to randomize)", lines=1, max_lines=1,
value=img2img_defaults["seed"])
img2img_batch_count = gr.Slider(minimum=1, maximum=50, step=1,
label='Batch count (how many batches of images to generate)',
value=img2img_defaults['n_iter'])
img2img_dimensions_info_text_box = gr.Textbox(label="Aspect ratio (4:3 = 1.333 | 16:9 = 1.777 | 21:9 = 2.333)")
with gr.Column():
img2img_steps = gr.Slider(minimum=1, maximum=250, step=1, label="Sampling Steps",
value=img2img_defaults['ddim_steps'])
img2img_sampling = gr.Dropdown(label='Sampling method (k_lms is default k-diffusion sampler)',
choices=["DDIM", 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler',
'k_heun', 'k_lms'],
value=img2img_defaults['sampler_name'])
img2img_denoising = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength',
value=img2img_defaults['denoising_strength'])
img2img_toggles = gr.CheckboxGroup(label='', choices=img2img_toggles,
value=img2img_toggle_defaults, type="index")
img2img_realesrgan_model_name = gr.Dropdown(label='RealESRGAN model',
choices=['RealESRGAN_x4plus',
'RealESRGAN_x4plus_anime_6B'],
value='RealESRGAN_x4plus',
visible=RealESRGAN is not None) # TODO: Feels like I shouldnt slot it in here.
img2img_embeddings = gr.File(label="Embeddings file for textual inversion",
visible=show_embeddings)
img2img_image_editor_mode.change(
uifn.change_image_editor_mode,
[img2img_image_editor_mode, img2img_image_editor, img2img_resize, img2img_width, img2img_height],
[img2img_image_editor, img2img_image_mask, img2img_btn_editor, img2img_btn_mask,
img2img_painterro_btn, img2img_mask, img2img_mask_blur_strength, img2img_mask_input]
)
img2img_image_editor.edit(
uifn.update_image_mask,
[img2img_image_editor, img2img_resize, img2img_width, img2img_height],
img2img_image_mask
)
output_txt2img_copy_to_input_btn.click(
uifn.copy_img_to_input,
[output_txt2img_gallery],
[img2img_image_editor, img2img_image_mask, tabs],
_js=call_JS("moveImageFromGallery",
fromId="txt2img_gallery_output",
toId="img2img_editor")
)
output_img2img_copy_to_input_btn.click(
uifn.copy_img_to_edit,
[output_img2img_gallery],
[img2img_image_editor, tabs, img2img_image_editor_mode],
_js=call_JS("moveImageFromGallery",
fromId="img2img_gallery_output",
toId="img2img_editor")
)
output_img2img_copy_to_mask_btn.click(
uifn.copy_img_to_mask,
[output_img2img_gallery],
[img2img_image_mask, tabs, img2img_image_editor_mode],
_js=call_JS("moveImageFromGallery",
fromId="img2img_gallery_output",
toId="img2img_editor")
)
output_img2img_copy_to_clipboard_btn.click(fn=None, inputs=output_img2img_gallery, outputs=[],
_js=call_JS("copyImageFromGalleryToClipboard",
fromId="img2img_gallery_output")
)
img2img_func = img2img
img2img_inputs = [img2img_prompt, img2img_image_editor_mode, img2img_image_editor, img2img_image_mask, img2img_mask,
img2img_mask_blur_strength, img2img_steps, img2img_sampling, img2img_toggles,
img2img_realesrgan_model_name, img2img_batch_count, img2img_cfg,
img2img_denoising, img2img_seed, img2img_height, img2img_width, img2img_resize,
img2img_embeddings, img2img_mask_input]
img2img_outputs = [output_img2img_gallery, output_img2img_seed, output_img2img_params, output_img2img_stats]
# If a JobManager was passed in then wrap the Generate functions
if img2img_job_ui:
img2img_func, img2img_inputs, img2img_outputs = img2img_job_ui.wrap_func(
func=img2img_func,
inputs=img2img_inputs,
outputs=img2img_outputs,
)
def generate(*args):
args_list = list(args)
init_info_mask = args_list[3]
# Get the mask input and remove it from the list
mask_input = args_list[18]
del args_list[18]
# If an external mask is set, use it
if mask_input:
init_info_mask['mask'] = mask_input
args_list[3] = init_info_mask
# Return the result of img2img
return img2img_func(*args_list)
img2img_btn_mask.click(
generate,
img2img_inputs,
img2img_outputs
)
def img2img_submit_params():
return (img2img_func,
img2img_inputs,
img2img_outputs)
img2img_btn_editor.click(*img2img_submit_params())
# GENERATE ON ENTER
img2img_prompt.submit(None, None, None,
_js=call_JS("clickFirstVisibleButton",
rowId="prompt_row"))
img2img_painterro_btn.click(None,
[img2img_image_editor],
[img2img_image_editor, img2img_image_mask],
_js=call_JS("Painterro.init", toId="img2img_editor")
)
img2img_width.change(fn=uifn.update_dimensions_info, inputs=[img2img_width, img2img_height], outputs=img2img_dimensions_info_text_box)
img2img_height.change(fn=uifn.update_dimensions_info, inputs=[img2img_width, img2img_height], outputs=img2img_dimensions_info_text_box)
with gr.TabItem("Image Lab", id='imgproc_tab'):
gr.Markdown("Post-process results")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem('Single Image'):
imgproc_source = gr.Image(label="Source", source="upload", interactive=True, type="pil",elem_id="imglab_input")
#gfpgan_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Effect strength",
# value=gfpgan_defaults['strength'])
#select folder with images to process
with gr.TabItem('Batch Process'):
imgproc_folder = gr.File(label="Batch Process", file_count="multiple",source="upload", interactive=True, type="file")
imgproc_pngnfo = gr.Textbox(label="PNG Metadata", placeholder="PngNfo", visible=False, max_lines=5)
with gr.Row():
imgproc_btn = gr.Button("Process", variant="primary")
gr.HTML("""
<div id="90" style="max-width: 100%; font-size: 14px; text-align: center;" class="output-markdown gr-prose border-solid border border-gray-200 rounded gr-panel">
<p><b>Upscale Modes Guide</b></p>
<p></p>
<p><b>RealESRGAN</b></p>
<p>A 4X/2X fast upscaler that works well for stylized content, will smooth more detailed compositions.</p>
<p><b>GoBIG</b></p>
<p>A 2X upscaler that uses RealESRGAN to upscale the image and then slice it into small parts, each part gets diffused further by SD to create more details, great for adding and increasing details but will change the composition, might also fix issues like eyes etc, use the settings like img2img etc</p>
<p><b>Latent Diffusion Super Resolution</b></p>
<p>A 4X upscaler with high VRAM usage that uses a Latent Diffusion model to upscale the image, this will accentuate the details but won't change the composition, might introduce sharpening, great for textures or compositions with plenty of details, is slower.</p>
<p><b>GoLatent</b></p>
<p>A 8X upscaler with high VRAM usage, uses GoBig to add details and then uses a Latent Diffusion model to upscale the image, this will result in less artifacting/sharpeninng, use the settings to feed GoBig settings that will contribute to the result, this mode is considerbly slower</p>
</div>
""")
with gr.Column():
with gr.Tabs():
with gr.TabItem('Output'):
imgproc_output = gr.Gallery(label="Output", elem_id="imgproc_gallery_output")
with gr.Row(elem_id="proc_options_row"):
with gr.Box():
with gr.Column():
gr.Markdown("<b>Processor Selection</b>")
imgproc_toggles = gr.CheckboxGroup(label = '',choices=imgproc_mode_toggles, type="index")
#.change toggles to show options
#imgproc_toggles.change()
with gr.Box(visible=False) as gfpgan_group:
gfpgan_defaults = {
'strength': 100,
}
if 'gfpgan' in user_defaults:
gfpgan_defaults.update(user_defaults['gfpgan'])
if GFPGAN is None:
gr.HTML("""
<div id="90" style="max-width: 100%; font-size: 14px; text-align: center;" class="output-markdown gr-prose border-solid border border-gray-200 rounded gr-panel">
<p><b> Please download GFPGAN to activate face fixing features</b>, instructions are available at the <a href='https://github.com/hlky/stable-diffusion-webui'>Github</a></p>
</div>
""")
#gr.Markdown("")
#gr.Markdown("<b> Please download GFPGAN to activate face fixing features</b>, instructions are available at the <a href='https://github.com/hlky/stable-diffusion-webui'>Github</a>")
with gr.Column():
gr.Markdown("<b>GFPGAN Settings</b>")
imgproc_gfpgan_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Effect strength",
value=gfpgan_defaults['strength'],visible=GFPGAN is not None)
with gr.Box(visible=False) as upscale_group:
if LDSR:
upscaleModes = ['RealESRGAN','GoBig','Latent Diffusion SR','GoLatent ']
else:
gr.HTML("""
<div id="90" style="max-width: 100%; font-size: 14px; text-align: center;" class="output-markdown gr-prose border-solid border border-gray-200 rounded gr-panel">
<p><b> Please download LDSR to activate more upscale features</b>, instructions are available at the <a href='https://github.com/hlky/stable-diffusion-webui'>Github</a></p>
</div>
""")
upscaleModes = ['RealESRGAN','GoBig']
with gr.Column():
gr.Markdown("<b>Upscaler Selection</b>")
imgproc_upscale_toggles = gr.Radio(label = '',choices=upscaleModes, type="index",visible=RealESRGAN is not None,value='RealESRGAN')
with gr.Box(visible=False) as upscalerSettings_group:
with gr.Box(visible=True) as realesrgan_group:
with gr.Column():
gr.Markdown("<b>RealESRGAN Settings</b>")
imgproc_realesrgan_model_name = gr.Dropdown(label='RealESRGAN model', interactive=RealESRGAN is not None,
choices= ['RealESRGAN_x4plus',
'RealESRGAN_x4plus_anime_6B','RealESRGAN_x2plus',
'RealESRGAN_x2plus_anime_6B'],
value='RealESRGAN_x4plus',
visible=RealESRGAN is not None) # TODO: Feels like I shouldnt slot it in here.
with gr.Box(visible=False) as ldsr_group:
with gr.Row(elem_id="ldsr_settings_row"):
with gr.Column():
gr.Markdown("<b>Latent Diffusion Super Sampling Settings</b>")
imgproc_ldsr_steps = gr.Slider(minimum=0, maximum=500, step=10, label="LDSR Sampling Steps",
value=100,visible=LDSR is not None)
imgproc_ldsr_pre_downSample = gr.Dropdown(label='LDSR Pre Downsample mode (Lower resolution before processing for speed)',
choices=["None", '1/2', '1/4'],value="None",visible=LDSR is not None)
imgproc_ldsr_post_downSample = gr.Dropdown(label='LDSR Post Downsample mode (aka SuperSampling)',
choices=["None", "Original Size", '1/2', '1/4'],value="None",visible=LDSR is not None)
with gr.Box(visible=False) as gobig_group:
with gr.Row(elem_id="proc_prompt_row"):
with gr.Column():
gr.Markdown("<b>GoBig Settings</b>")
imgproc_prompt = gr.Textbox(label="",
elem_id='prompt_input',
placeholder="A corgi wearing a top hat as an oil painting.",
lines=1,
max_lines=1,
value=imgproc_defaults['prompt'],
show_label=True,
visible=RealESRGAN is not None)
imgproc_sampling = gr.Dropdown(label='Sampling method (k_lms is default k-diffusion sampler)',
choices=["DDIM", 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler',
'k_heun', 'k_lms'],
value=imgproc_defaults['sampler_name'],visible=RealESRGAN is not None)
imgproc_steps = gr.Slider(minimum=1, maximum=250, step=1, label="Sampling Steps",
value=imgproc_defaults['ddim_steps'],visible=RealESRGAN is not None)
imgproc_cfg = gr.Slider(minimum=1.0, maximum=30.0, step=0.5,
label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)',
value=imgproc_defaults['cfg_scale'],visible=RealESRGAN is not None)
imgproc_denoising = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength',
value=imgproc_defaults['denoising_strength'],visible=RealESRGAN is not None)
imgproc_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height",
value=imgproc_defaults["height"],visible=False) # not currently implemented
imgproc_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width",
value=imgproc_defaults["width"],visible=False) # not currently implemented
imgproc_seed = gr.Textbox(label="Seed (blank to randomize)", lines=1, max_lines=1,
value=imgproc_defaults["seed"],visible=RealESRGAN is not None)
imgproc_btn.click(
imgproc,
[imgproc_source, imgproc_folder,imgproc_prompt,imgproc_toggles,
imgproc_upscale_toggles,imgproc_realesrgan_model_name,imgproc_sampling, imgproc_steps, imgproc_height,
imgproc_width, imgproc_cfg, imgproc_denoising, imgproc_seed,imgproc_gfpgan_strength,imgproc_ldsr_steps,imgproc_ldsr_pre_downSample,imgproc_ldsr_post_downSample],
[imgproc_output])
imgproc_source.change(
uifn.get_png_nfo,
[imgproc_source],
[imgproc_pngnfo] )
output_txt2img_to_imglab.click(
fn=uifn.copy_img_params_to_lab,
inputs = [output_txt2img_params],
outputs = [imgproc_prompt,imgproc_seed,imgproc_steps,imgproc_cfg,imgproc_sampling],
)
output_txt2img_to_imglab.click(
fn=uifn.copy_img_to_lab,
inputs = [output_txt2img_gallery],
outputs = [imgproc_source, tabs],
_js=call_JS("moveImageFromGallery",
fromId="txt2img_gallery_output",
toId="imglab_input")
)
if RealESRGAN is None:
with gr.Row():
with gr.Column():
#seperator
gr.HTML("""
<div id="90" style="max-width: 100%; font-size: 14px; text-align: center;" class="output-markdown gr-prose border-solid border border-gray-200 rounded gr-panel">
<p><b> Please download RealESRGAN to activate upscale features</b>, instructions are available at the <a href='https://github.com/hlky/stable-diffusion-webui'>Github</a></p>
</div>
""")
imgproc_toggles.change(fn=uifn.toggle_options_gfpgan, inputs=[imgproc_toggles], outputs=[gfpgan_group])
imgproc_toggles.change(fn=uifn.toggle_options_upscalers, inputs=[imgproc_toggles], outputs=[upscale_group])
imgproc_toggles.change(fn=uifn.toggle_options_upscalers, inputs=[imgproc_toggles], outputs=[upscalerSettings_group])
imgproc_upscale_toggles.change(fn=uifn.toggle_options_realesrgan, inputs=[imgproc_upscale_toggles], outputs=[realesrgan_group])
imgproc_upscale_toggles.change(fn=uifn.toggle_options_ldsr, inputs=[imgproc_upscale_toggles], outputs=[ldsr_group])
imgproc_upscale_toggles.change(fn=uifn.toggle_options_gobig, inputs=[imgproc_upscale_toggles], outputs=[gobig_group])
"""
if GFPGAN is not None:
gfpgan_defaults = {
'strength': 100,
}
if 'gfpgan' in user_defaults:
gfpgan_defaults.update(user_defaults['gfpgan'])
with gr.TabItem("GFPGAN", id='cfpgan_tab'):
gr.Markdown("Fix faces on images")
with gr.Row():
with gr.Column():
gfpgan_source = gr.Image(label="Source", source="upload", interactive=True, type="pil")
gfpgan_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Effect strength",
value=gfpgan_defaults['strength'])
gfpgan_btn = gr.Button("Generate", variant="primary")
with gr.Column():
gfpgan_output = gr.Image(label="Output", elem_id='gan_image')
gfpgan_btn.click(
run_GFPGAN,
[gfpgan_source, gfpgan_strength],
[gfpgan_output]
)
if RealESRGAN is not None:
with gr.TabItem("RealESRGAN", id='realesrgan_tab'):
gr.Markdown("Upscale images")
with gr.Row():
with gr.Column():
realesrgan_source = gr.Image(label="Source", source="upload", interactive=True, type="pil")
realesrgan_model_name = gr.Dropdown(label='RealESRGAN model', choices=['RealESRGAN_x4plus',
'RealESRGAN_x4plus_anime_6B'],
value='RealESRGAN_x4plus')
realesrgan_btn = gr.Button("Generate")
with gr.Column():
realesrgan_output = gr.Image(label="Output", elem_id='gan_image')
realesrgan_btn.click(
run_RealESRGAN,
[realesrgan_source, realesrgan_model_name],
[realesrgan_output]
)
output_txt2img_to_upscale_esrgan.click(
uifn.copy_img_to_upscale_esrgan,
output_txt2img_gallery,
[realesrgan_source, tabs],
_js=js_move_image('txt2img_gallery_output', 'img2img_editor'))
"""
gr.HTML("""
<div id="90" style="max-width: 100%; font-size: 14px; text-align: center;" class="output-markdown gr-prose border-solid border border-gray-200 rounded gr-panel">
<p>For help and advanced usage guides, visit the <a href="https://github.com/hlky/stable-diffusion-webui/wiki" target="_blank">Project Wiki</a></p>
<p>Stable Diffusion WebUI is an open-source project. You can find the latest stable builds on the <a href="https://github.com/hlky/stable-diffusion" target="_blank">main repository</a>.
If you would like to contribute to development or test bleeding edge builds, you can visit the <a href="https://github.com/hlky/stable-diffusion-webui" target="_blank">developement repository</a>.</p>
</div>
""")
# Hack: Detect the load event on the frontend
# Won't be needed in the next version of gradio
# See the relevant PR: https://github.com/gradio-app/gradio/pull/2108
load_detector = gr.Number(value=0, label="Load Detector", visible=False)
load_detector.change(None, None, None, _js=js(opt))
demo.load(lambda x: 42, inputs=load_detector, outputs=load_detector)
return demo