-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathEDGE.py
288 lines (259 loc) · 10 KB
/
EDGE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import multiprocessing
import os
import pickle
from functools import partial
from pathlib import Path
import torch
import torch.nn.functional as F
import wandb
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.state import AcceleratorState
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataset.dance_dataset import AISTPPDataset
from dataset.preprocess import increment_path
from model.adan import Adan
from model.diffusion import GaussianDiffusion
from model.model import DanceDecoder
from vis import SMPLSkeleton
def wrap(x):
return {f"module.{key}": value for key, value in x.items()}
def maybe_wrap(x, num):
return x if num == 1 else wrap(x)
class EDGE:
def __init__(
self,
feature_type,
checkpoint_path="",
normalizer=None,
EMA=True,
learning_rate=4e-4,
weight_decay=0.02,
):
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
self.accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
state = AcceleratorState()
num_processes = state.num_processes
use_baseline_feats = feature_type == "baseline"
pos_dim = 3
rot_dim = 24 * 6 # 24 joints, 6dof
self.repr_dim = repr_dim = pos_dim + rot_dim + 4
feature_dim = 35 if use_baseline_feats else 4800
horizon_seconds = 5
FPS = 30
self.horizon = horizon = horizon_seconds * FPS
self.accelerator.wait_for_everyone()
checkpoint = None
if checkpoint_path != "":
checkpoint = torch.load(
checkpoint_path, map_location=self.accelerator.device
)
self.normalizer = checkpoint["normalizer"]
model = DanceDecoder(
nfeats=repr_dim,
seq_len=horizon,
latent_dim=512,
ff_size=1024,
num_layers=8,
num_heads=8,
dropout=0.1,
cond_feature_dim=feature_dim,
activation=F.gelu,
)
smpl = SMPLSkeleton(self.accelerator.device)
diffusion = GaussianDiffusion(
model,
horizon,
repr_dim,
smpl,
schedule="cosine",
n_timestep=1000,
predict_epsilon=False,
loss_type="l2",
use_p2=False,
cond_drop_prob=0.25,
guidance_weight=2,
)
print(
"Model has {} parameters".format(sum(y.numel() for y in model.parameters()))
)
self.model = self.accelerator.prepare(model)
self.diffusion = diffusion.to(self.accelerator.device)
optim = Adan(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
self.optim = self.accelerator.prepare(optim)
if checkpoint_path != "":
self.model.load_state_dict(
maybe_wrap(
checkpoint["ema_state_dict" if EMA else "model_state_dict"],
num_processes,
)
)
def eval(self):
self.diffusion.eval()
def train(self):
self.diffusion.train()
def prepare(self, objects):
return self.accelerator.prepare(*objects)
def train_loop(self, opt):
# load datasets
train_tensor_dataset_path = os.path.join(
opt.processed_data_dir, f"train_tensor_dataset.pkl"
)
test_tensor_dataset_path = os.path.join(
opt.processed_data_dir, f"test_tensor_dataset.pkl"
)
if (
not opt.no_cache
and os.path.isfile(train_tensor_dataset_path)
and os.path.isfile(test_tensor_dataset_path)
):
train_dataset = pickle.load(open(train_tensor_dataset_path, "rb"))
test_dataset = pickle.load(open(test_tensor_dataset_path, "rb"))
else:
train_dataset = AISTPPDataset(
data_path=opt.data_path,
backup_path=opt.processed_data_dir,
train=True,
force_reload=opt.force_reload,
)
test_dataset = AISTPPDataset(
data_path=opt.data_path,
backup_path=opt.processed_data_dir,
train=False,
normalizer=train_dataset.normalizer,
force_reload=opt.force_reload,
)
# cache the dataset in case
if self.accelerator.is_main_process:
pickle.dump(train_dataset, open(train_tensor_dataset_path, "wb"))
pickle.dump(test_dataset, open(test_tensor_dataset_path, "wb"))
# set normalizer
self.normalizer = test_dataset.normalizer
# data loaders
# decide number of workers based on cpu count
num_cpus = multiprocessing.cpu_count()
train_data_loader = DataLoader(
train_dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=min(int(num_cpus * 0.75), 32),
pin_memory=True,
drop_last=True,
)
test_data_loader = DataLoader(
test_dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=2,
pin_memory=True,
drop_last=True,
)
train_data_loader = self.accelerator.prepare(train_data_loader)
# boot up multi-gpu training. test dataloader is only on main process
load_loop = (
partial(tqdm, position=1, desc="Batch")
if self.accelerator.is_main_process
else lambda x: x
)
if self.accelerator.is_main_process:
save_dir = str(increment_path(Path(opt.project) / opt.exp_name))
opt.exp_name = save_dir.split("/")[-1]
wandb.init(project=opt.wandb_pj_name, name=opt.exp_name)
save_dir = Path(save_dir)
wdir = save_dir / "weights"
wdir.mkdir(parents=True, exist_ok=True)
self.accelerator.wait_for_everyone()
for epoch in range(1, opt.epochs + 1):
avg_loss = 0
avg_vloss = 0
avg_fkloss = 0
avg_footloss = 0
# train
self.train()
for step, (x, cond, filename, wavnames) in enumerate(
load_loop(train_data_loader)
):
total_loss, (loss, v_loss, fk_loss, foot_loss) = self.diffusion(
x, cond, t_override=None
)
self.optim.zero_grad()
self.accelerator.backward(total_loss)
self.optim.step()
# ema update and train loss update only on main
if self.accelerator.is_main_process:
avg_loss += loss.detach().cpu().numpy()
avg_vloss += v_loss.detach().cpu().numpy()
avg_fkloss += fk_loss.detach().cpu().numpy()
avg_footloss += foot_loss.detach().cpu().numpy()
if step % opt.ema_interval == 0:
self.diffusion.ema.update_model_average(
self.diffusion.master_model, self.diffusion.model
)
# Save model
if (epoch % opt.save_interval) == 0:
# everyone waits here for the val loop to finish ( don't start next train epoch early)
self.accelerator.wait_for_everyone()
# save only if on main thread
if self.accelerator.is_main_process:
self.eval()
# log
avg_loss /= len(train_data_loader)
avg_vloss /= len(train_data_loader)
avg_fkloss /= len(train_data_loader)
avg_footloss /= len(train_data_loader)
log_dict = {
"Train Loss": avg_loss,
"V Loss": avg_vloss,
"FK Loss": avg_fkloss,
"Foot Loss": avg_footloss,
}
wandb.log(log_dict)
ckpt = {
"ema_state_dict": self.diffusion.master_model.state_dict(),
"model_state_dict": self.accelerator.unwrap_model(
self.model
).state_dict(),
"optimizer_state_dict": self.optim.state_dict(),
"normalizer": self.normalizer,
}
torch.save(ckpt, os.path.join(wdir, f"train-{epoch}.pt"))
# generate a sample
render_count = 2
shape = (render_count, self.horizon, self.repr_dim)
print("Generating Sample")
# draw a music from the test dataset
(x, cond, filename, wavnames) = next(iter(test_data_loader))
cond = cond.to(self.accelerator.device)
self.diffusion.render_sample(
shape,
cond[:render_count],
self.normalizer,
epoch,
os.path.join(opt.render_dir, "train_" + opt.exp_name),
name=wavnames[:render_count],
sound=True,
)
print(f"[MODEL SAVED at Epoch {epoch}]")
if self.accelerator.is_main_process:
wandb.run.finish()
def render_sample(
self, data_tuple, label, render_dir, render_count=-1, fk_out=None, render=True
):
_, cond, wavname = data_tuple
assert len(cond.shape) == 3
if render_count < 0:
render_count = len(cond)
shape = (render_count, self.horizon, self.repr_dim)
cond = cond.to(self.accelerator.device)
self.diffusion.render_sample(
shape,
cond[:render_count],
self.normalizer,
label,
render_dir,
name=wavname[:render_count],
sound=True,
mode="long",
fk_out=fk_out,
render=render
)