-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatrix_compute.py
56 lines (41 loc) · 1.55 KB
/
matrix_compute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import cupy as cp
import math
import time
from numba import njit
from scipy.sparse.linalg import cg
import filter_constant as C
@njit
def get_patch(LR, xP, yP, zP):
return LR[xP - C.PATCH_HALF: xP + (C.PATCH_HALF + 1),
yP - C.PATCH_HALF: yP + (C.PATCH_HALF + 1),
zP - C.PATCH_HALF: zP + (C.PATCH_HALF + 1)]
@njit
def get_gxyz(Lgx, Lgy, Lgz, xP, yP, zP):
gx = Lgx[xP - C.GRADIENT_HALF: xP + (C.GRADIENT_HALF + 1),
yP - C.GRADIENT_HALF: yP + (C.GRADIENT_HALF + 1),
zP - C.GRADIENT_HALF: zP + (C.GRADIENT_HALF + 1)]
gy = Lgy[xP - C.GRADIENT_HALF: xP + (C.GRADIENT_HALF + 1),
yP - C.GRADIENT_HALF: yP + (C.GRADIENT_HALF + 1),
zP - C.GRADIENT_HALF: zP + (C.GRADIENT_HALF + 1)]
gz = Lgz[xP - C.GRADIENT_HALF: xP + (C.GRADIENT_HALF + 1),
yP - C.GRADIENT_HALF: yP + (C.GRADIENT_HALF + 1),
zP - C.GRADIENT_HALF: zP + (C.GRADIENT_HALF + 1)]
return gx, gy, gz
def add_qv_jt(patchSa, xSa, Qa, Va, j, t):
A = cp.array(patchSa)
b = cp.array(xSa).reshape(-1, 1)
Qa = cp.array(Qa)
Va = cp.array(Va)
Qa += cp.dot(A.T, A)
Va += cp.dot(A.T, b)
return Qa.get(), Va.get()
def compute_h(Q, V):
h = np.zeros((Q.shape[0], Q.shape[1]))
print("\rComputing H... ")
start = time.time()
for j in range(C.Q_TOTAL):
print('\r{} / {}'.format(j + 1, C.Q_TOTAL), end='')
h[j] = cg(Q[j], V[j], tol=1e-5)[0]
h = np.array(h, dtype=np.float32)
np.save('./arrays/h_{}x_{}'.format(C.R, C.Q_TOTAL), h)