-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_university.py
356 lines (274 loc) · 14.9 KB
/
train_university.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
import time
import math
import shutil
import sys
import torch
from dataclasses import dataclass
from torch.cuda.amp import GradScaler
from torch.utils.data import DataLoader
from transformers import get_constant_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_cosine_schedule_with_warmup
from sample4geo.dataset.university import U1652DatasetEval, U1652DatasetTrain, get_transforms
from sample4geo.utils import setup_system, Logger
from sample4geo.trainer import train
from sample4geo.evaluate.university import evaluate
from sample4geo.loss import InfoNCE
from sample4geo.model import TimmModel
@dataclass
class Configuration:
# Model
model: str = 'convnext_base.fb_in22k_ft_in1k_384'
# Override model image size
img_size: int = 384
# Training
mixed_precision: bool = True
custom_sampling: bool = True # use custom sampling instead of random
seed = 1
epochs: int = 1
batch_size: int = 128 # keep in mind real_batch_size = 2 * batch_size
verbose: bool = True
gpu_ids: tuple = (0,1,2,3) # GPU ids for training
# Eval
batch_size_eval: int = 128
eval_every_n_epoch: int = 1 # eval every n Epoch
normalize_features: bool = True
eval_gallery_n: int = -1 # -1 for all or int
# Optimizer
clip_grad = 100. # None | float
decay_exclue_bias: bool = False
grad_checkpointing: bool = False # Gradient Checkpointing
# Loss
label_smoothing: float = 0.1
# Learning Rate
lr: float = 0.001 # 1 * 10^-4 for ViT | 1 * 10^-1 for CNN
scheduler: str = "cosine" # "polynomial" | "cosine" | "constant" | None
warmup_epochs: int = 0.1
lr_end: float = 0.0001 # only for "polynomial"
# Dataset
dataset: str = 'U1652-D2S' # 'U1652-D2S' | 'U1652-S2D'
data_folder: str = "./data/U1652"
# Augment Images
prob_flip: float = 0.5 # flipping the sat image and drone image simultaneously
# Savepath for model checkpoints
model_path: str = "./university"
# Eval before training
zero_shot: bool = False
# Checkpoint to start from
checkpoint_start = None
# set num_workers to 0 if on Windows
num_workers: int = 0 if os.name == 'nt' else 4
# train on GPU if available
device: str = 'cuda' if torch.cuda.is_available() else 'cpu'
# for better performance
cudnn_benchmark: bool = True
# make cudnn deterministic
cudnn_deterministic: bool = False
#-----------------------------------------------------------------------------#
# Train Config #
#-----------------------------------------------------------------------------#
config = Configuration()
if config.dataset == 'U1652-D2S':
config.query_folder_train = './data/U1652/train/satellite'
config.gallery_folder_train = './data/U1652/train/drone'
config.query_folder_test = './data/U1652/test/query_drone'
config.gallery_folder_test = './data/U1652/test/gallery_satellite'
elif config.dataset == 'U1652-S2D':
config.query_folder_train = './data/U1652/train/satellite'
config.gallery_folder_train = './data/U1652/train/drone'
config.query_folder_test = './data/U1652/test/query_satellite'
config.gallery_folder_test = './data/U1652/test/gallery_drone'
if __name__ == '__main__':
model_path = "{}/{}/{}".format(config.model_path,
config.model,
time.strftime("%H%M%S"))
if not os.path.exists(model_path):
os.makedirs(model_path)
shutil.copyfile(os.path.basename(__file__), "{}/train.py".format(model_path))
# Redirect print to both console and log file
sys.stdout = Logger(os.path.join(model_path, 'log.txt'))
setup_system(seed=config.seed,
cudnn_benchmark=config.cudnn_benchmark,
cudnn_deterministic=config.cudnn_deterministic)
#-----------------------------------------------------------------------------#
# Model #
#-----------------------------------------------------------------------------#
print("\nModel: {}".format(config.model))
model = TimmModel(config.model,
pretrained=True,
img_size=config.img_size)
data_config = model.get_config()
print(data_config)
mean = data_config["mean"]
std = data_config["std"]
img_size = (config.img_size, config.img_size)
# Activate gradient checkpointing
if config.grad_checkpointing:
model.set_grad_checkpointing(True)
# Load pretrained Checkpoint
if config.checkpoint_start is not None:
print("Start from:", config.checkpoint_start)
model_state_dict = torch.load(config.checkpoint_start)
model.load_state_dict(model_state_dict, strict=False)
# Data parallel
print("GPUs available:", torch.cuda.device_count())
if torch.cuda.device_count() > 1 and len(config.gpu_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=config.gpu_ids)
# Model to device
model = model.to(config.device)
print("\nImage Size Query:", img_size)
print("Image Size Ground:", img_size)
print("Mean: {}".format(mean))
print("Std: {}\n".format(std))
#-----------------------------------------------------------------------------#
# DataLoader #
#-----------------------------------------------------------------------------#
# Transforms
val_transforms, train_sat_transforms, train_drone_transforms = get_transforms(img_size, mean=mean, std=std)
# Train
train_dataset = U1652DatasetTrain(query_folder=config.query_folder_train,
gallery_folder=config.gallery_folder_train,
transforms_query=train_sat_transforms,
transforms_gallery=train_drone_transforms,
prob_flip=config.prob_flip,
shuffle_batch_size=config.batch_size,
)
train_dataloader = DataLoader(train_dataset,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=not config.custom_sampling,
pin_memory=True)
# Reference Satellite Images
query_dataset_test = U1652DatasetEval(data_folder=config.query_folder_test,
mode="query",
transforms=val_transforms,
)
query_dataloader_test = DataLoader(query_dataset_test,
batch_size=config.batch_size_eval,
num_workers=config.num_workers,
shuffle=False,
pin_memory=True)
# Query Ground Images Test
gallery_dataset_test = U1652DatasetEval(data_folder=config.gallery_folder_test,
mode="gallery",
transforms=val_transforms,
sample_ids=query_dataset_test.get_sample_ids(),
gallery_n=config.eval_gallery_n,
)
gallery_dataloader_test = DataLoader(gallery_dataset_test,
batch_size=config.batch_size_eval,
num_workers=config.num_workers,
shuffle=False,
pin_memory=True)
print("Query Images Test:", len(query_dataset_test))
print("Gallery Images Test:", len(gallery_dataset_test))
#-----------------------------------------------------------------------------#
# Loss #
#-----------------------------------------------------------------------------#
loss_fn = torch.nn.CrossEntropyLoss(label_smoothing=config.label_smoothing)
loss_function = InfoNCE(loss_function=loss_fn,
device=config.device,
)
if config.mixed_precision:
scaler = GradScaler(init_scale=2.**10)
else:
scaler = None
#-----------------------------------------------------------------------------#
# optimizer #
#-----------------------------------------------------------------------------#
if config.decay_exclue_bias:
param_optimizer = list(model.named_parameters())
no_decay = ["bias", "LayerNorm.bias"]
optimizer_parameters = [
{
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
"weight_decay": 0.01,
},
{
"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_parameters, lr=config.lr)
else:
optimizer = torch.optim.AdamW(model.parameters(), lr=config.lr)
#-----------------------------------------------------------------------------#
# Scheduler #
#-----------------------------------------------------------------------------#
train_steps = len(train_dataloader) * config.epochs
warmup_steps = len(train_dataloader) * config.warmup_epochs
if config.scheduler == "polynomial":
print("\nScheduler: polynomial - max LR: {} - end LR: {}".format(config.lr, config.lr_end))
scheduler = get_polynomial_decay_schedule_with_warmup(optimizer,
num_training_steps=train_steps,
lr_end = config.lr_end,
power=1.5,
num_warmup_steps=warmup_steps)
elif config.scheduler == "cosine":
print("\nScheduler: cosine - max LR: {}".format(config.lr))
scheduler = get_cosine_schedule_with_warmup(optimizer,
num_training_steps=train_steps,
num_warmup_steps=warmup_steps)
elif config.scheduler == "constant":
print("\nScheduler: constant - max LR: {}".format(config.lr))
scheduler = get_constant_schedule_with_warmup(optimizer,
num_warmup_steps=warmup_steps)
else:
scheduler = None
print("Warmup Epochs: {} - Warmup Steps: {}".format(str(config.warmup_epochs).ljust(2), warmup_steps))
print("Train Epochs: {} - Train Steps: {}".format(config.epochs, train_steps))
#-----------------------------------------------------------------------------#
# Zero Shot #
#-----------------------------------------------------------------------------#
if config.zero_shot:
print("\n{}[{}]{}".format(30*"-", "Zero Shot", 30*"-"))
r1_test = evaluate(config=config,
model=model,
query_loader=query_dataloader_test,
gallery_loader=gallery_dataloader_test,
ranks=[1, 5, 10],
step_size=1000,
cleanup=True)
#-----------------------------------------------------------------------------#
# Shuffle #
#-----------------------------------------------------------------------------#
if config.custom_sampling:
train_dataloader.dataset.shuffle()
#-----------------------------------------------------------------------------#
# Train #
#-----------------------------------------------------------------------------#
start_epoch = 0
best_score = 0
for epoch in range(1, config.epochs+1):
print("\n{}[Epoch: {}]{}".format(30*"-", epoch, 30*"-"))
train_loss = train(config,
model,
dataloader=train_dataloader,
loss_function=loss_function,
optimizer=optimizer,
scheduler=scheduler,
scaler=scaler)
print("Epoch: {}, Train Loss = {:.3f}, Lr = {:.6f}".format(epoch,
train_loss,
optimizer.param_groups[0]['lr']))
# evaluate
if (epoch % config.eval_every_n_epoch == 0 and epoch != 0) or epoch == config.epochs:
print("\n{}[{}]{}".format(30*"-", "Evaluate", 30*"-"))
r1_test = evaluate(config=config,
model=model,
query_loader=query_dataloader_test,
gallery_loader=gallery_dataloader_test,
ranks=[1, 5, 10],
step_size=1000,
cleanup=True)
if r1_test > best_score:
best_score = r1_test
if torch.cuda.device_count() > 1 and len(config.gpu_ids) > 1:
torch.save(model.module.state_dict(), '{}/weights_e{}_{:.4f}.pth'.format(model_path, epoch, r1_test))
else:
torch.save(model.state_dict(), '{}/weights_e{}_{:.4f}.pth'.format(model_path, epoch, r1_test))
if config.custom_sampling:
train_dataloader.dataset.shuffle()
if torch.cuda.device_count() > 1 and len(config.gpu_ids) > 1:
torch.save(model.module.state_dict(), '{}/weights_end.pth'.format(model_path))
else:
torch.save(model.state_dict(), '{}/weights_end.pth'.format(model_path))