-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
208 lines (160 loc) · 7.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
from dataset.DriveSimDataset import DriveSimDepthDataset
from model import UNet
import numpy as np
from torchvision.transforms import ToTensor
from torchvision import transforms
import torchvision
import os
from glob import glob
from torch.utils.data import DataLoader
from torch import optim
import torch.nn as nn
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
import sys
from utils import compute_loss, calculate_metrics, create_figures, get_args_train
#fix random seed
torch.manual_seed(0)
np.random.seed(0)
args = get_args_train()
print("Training on", args.dataset_root, "with", args.dataset, "dataset")
print("Max depth:", args.max_depth)
print("Batch size:", args.batch_size)
print("Epochs:", args.epochs)
print("Learning rate:", args.lr)
print("Checkpoint directory:", args.checkpoint_dir)
print("Log directory:", args.log_dir)
if(args.checkpoint is not None):
print("Checkpoint:", args.checkpoint)
gen_type = args.dataset
max_depth = args.max_depth
if args.experiment_name != "":
experiment_name = args.experiment_name + '_' + gen_type + '_' + str(max_depth) + 'd_1'
else:
experiment_name = gen_type + '_' + str(max_depth) + 'd_1'
print("Experiment name:", experiment_name)
# loading the dataset
transform = transforms.Compose([ToTensor(), transforms.CenterCrop(640),transforms.Resize(320,antialias=True)])
dataset_train = DriveSimDepthDataset(args.dataset_root, args.dataset, "train",transform=transform, target_transform=transform, max_depth=max_depth,max_file=-1, max_depth_placeholder=max_depth)
dataset_test = DriveSimDepthDataset(args.dataset_root, args.dataset, "test",transform=transform, target_transform=transform, max_depth=max_depth,max_file=-1, max_depth_placeholder=max_depth)
dataset_val = DriveSimDepthDataset(args.dataset_root, args.dataset, "val",transform=transform, target_transform=transform, max_depth=max_depth,max_file=-1, max_depth_placeholder=max_depth)
ltrain = len(dataset_train)
ltest = len(dataset_test)
lval = len(dataset_val)
lsum = ltrain + ltest + lval
print("Dataset size:")
print("Train :",ltrain, "(",ltrain/lsum*100,"%)")
print("Test :",ltest, "(",ltest/lsum*100,"%)")
print("Validation :",lval, "(",lval/lsum*100,"%)")
batch_size = args.batch_size
train_loader = DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=16)
val_loader = DataLoader(dataset_val, batch_size=batch_size, shuffle=True, num_workers=16)
# device
if args.device == 'cuda':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
print("Device:", device)
epoch_start = 1
# model
model = UNet(n_channels=3, n_classes=1, bilinear=False)
if(args.checkpoint is not None):
if not os.path.exists(args.checkpoint):
print("Checkpoint not found")
sys.exit(1)
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['model_state_dict'])
epoch_start = checkpoint['epoch'] + 1
print("Checkpoint loaded from", args.checkpoint)
print("Starting from epoch:", epoch_start)
model.to(device)
# optimizer
lr = args.lr
optimizer = optim.AdamW(model.parameters(), lr=lr)
if args.checkpoint is not None:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# creating tensorboard writer and checkpoint directory
writer = SummaryWriter(os.path.join(args.log_dir, experiment_name))
checkpoint_dir = os.path.join(args.checkpoint_dir, experiment_name)
os.makedirs(checkpoint_dir, exist_ok=True)
epochs = args.epochs
best_val_rmse = np.inf
best_epoch = 0
if args.checkpoint is not None:
best_val_rmse = checkpoint['rmse'] if 'rmse' in checkpoint else np.inf
best_epoch = checkpoint['epoch']
#train loop
for epoch in range(epoch_start,epochs+1):
model.train()
epoch_loss = 0
loop = tqdm(train_loader)
for batch_idx, (data, target) in enumerate(loop):
data, target = data.to(device), target.to(device)
target = target / max_depth
optimizer.zero_grad()
output = model(data)
output = torch.nn.functional.sigmoid(output)
loss = compute_loss(output,target)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
loop.set_description(f"Training Epoch [{epoch}/{epochs}]")
loop.set_postfix(loss=loss.item(), epoch_loss=epoch_loss)
writer.add_scalar('Training loss',epoch_loss,epoch)
#validation loop
model.eval()
val_loss = 0
metrics_name = ["a1", "a2", "a3", "abs_rel", "rmse", "log_10", "rmse_log", "silog", "sq_rel"]
metrics = {name: [] for name in metrics_name}
with torch.no_grad():
loop = tqdm(val_loader)
for batch_idx, (data, target) in enumerate(loop):
data, target = data.to(device), target.to(device)
target = target / max_depth
output = model(data)
output = torch.nn.functional.sigmoid(output)
output_unnorm = output * max_depth
target_unnorm = target * max_depth
loss = compute_loss(output,target)
val_loss += loss.item()
loop.set_description(f"Validation Epoch [{epoch}/{epochs}]")
loop.set_postfix(loss=loss.item(), validation_loss=val_loss)
res_metrics = calculate_metrics(target_unnorm.cpu().float().numpy().flatten(), output_unnorm.cpu().float().numpy().flatten())
for i, name in enumerate(metrics_name):
metrics[name].append(res_metrics[i])
# compute the mean of the metrics
metrics = {name: np.mean(metrics[name]) for name in metrics_name}
# log validation metrics
writer.add_scalar('Validation loss', epoch_loss, epoch)
for name in metrics_name:
writer.add_scalar('Validation ' + name, metrics[name], epoch)
# log example images from the validation set
figure_input, figure_target, figure_output = create_figures(data, target, output, max_depth)
writer.add_figure('Input', figure_input, epoch)
writer.add_figure('Target', figure_target, epoch)
writer.add_figure('Output', figure_output, epoch)
rmse = metrics["rmse"]
# save the best model
if rmse < best_val_rmse:
best_val_rmse = rmse
best_epoch = epoch
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch_loss': epoch_loss,
'val_loss': val_loss,
'rmse': rmse,
}, os.path.join(checkpoint_dir, f"best_model.pth"))
print("Best model saved at epoch", epoch)
# save the model every checkpoint_interval epochs
if epoch % args.checkpoint_interval == 0:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch_loss': epoch_loss,
'val_loss': val_loss,
'rmse': rmse,
}, os.path.join(checkpoint_dir, f"checkpoint_{epoch}.pth"))