forked from RTKConsortium/PCT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpctSchulteMLPFunction.txx
220 lines (184 loc) · 6.94 KB
/
pctSchulteMLPFunction.txx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
namespace pct
{
SchulteMLPFunction
::SchulteMLPFunction()
{
// We apply a change of origin, u0 is always 0
m_u0=0.;
// Construct the constant part of R0 and R1 (equations 11 and 14)
m_R0(0,0) = 1.;
m_R0(1,0) = 0.;
m_R0(1,1) = 1.;
m_R1 = m_R0;
// Transpose
m_R0T = m_R0.GetTranspose();
m_R1T = m_R1.GetTranspose();
// Construct the constant part of Sin and Sout (Eq. 14 & 15 in Krah 2018, PMB)
// Needed only when tracker uncertainties are considered
m_Sin(0,0) = 1.;
m_Sin(1,0) = 0.;
m_Sin(1,1) = 1.;
m_Sout = m_Sin;
}
// Initialize terms needed to include tracker uncertainties
void
SchulteMLPFunction
::InitUncertain(const VectorType posIn, const VectorType posOut, const VectorType dirIn, const VectorType dirOut, double dEntry, double dExit, double TrackerResolution, double TrackerPairSpacing, double MaterialBudget)
{
m_considerTrackerUncertainties = true; // NK: maybe this should actually go into constructor
m_u2 = posOut[2]-posIn[2];
const double sigmaPSq = TrackerResolution * TrackerResolution;
// Finish constructing Sin and Sout matrices (Eq. 14 & 15 in Krah 2018, PMB)
m_Sin(0,1) = dEntry;
m_Sout(0,1) = dExit;
// Transpose
m_SinT = m_Sin.GetTranspose();
m_SoutT = m_Sout.GetTranspose();
m_Sout_Inv = m_Sout;
InverseMatrix(m_Sout_Inv);
m_SoutT_Inv = m_SoutT;
InverseMatrix(m_SoutT_Inv);
m_SigmaIn(0,0) = 1;
m_SigmaIn(0,1) = 1 / TrackerPairSpacing;
m_SigmaIn(1,0) = m_SigmaIn(0,1);
m_SigmaIn(1,1) = 2 / TrackerPairSpacing / TrackerPairSpacing;
m_SigmaIn *= sigmaPSq;
m_SigmaOut(0,0) = m_SigmaIn(0,0);
m_SigmaOut(0,1) = -m_SigmaIn(0,1);
m_SigmaOut(1,0) = -m_SigmaIn(1,0);
m_SigmaOut(1,1) = m_SigmaIn(1,1);
m_SigmaOut *= sigmaPSq;
const double c = 13.6*CLHEP::MeV * 13.6*CLHEP::MeV / (36.1*CLHEP::cm);
const double trackerThickness = MaterialBudget * 36.1*CLHEP::cm;
m_SigmaIn(1,1) += Functor::SchulteMLP::IntegralForSigmaSqTheta::GetValue(trackerThickness) * c;
// m_SigmaOut(1,1) += Functor::SchulteMLP::IntegralForSigmaSqTheta::GetValue(trackerThickness) * c;
m_SigmaOut(1,1) += (Functor::SchulteMLP::IntegralForSigmaSqTheta::GetValue(m_u2 + trackerThickness) - Functor::SchulteMLP::IntegralForSigmaSqTheta::GetValue(m_u2)) * c;
SchulteMLPFunction::Init(posIn, posOut, dirIn, dirOut);
}
// standard part of the Initialization
void
SchulteMLPFunction
::Init(const VectorType posIn, const VectorType posOut, const VectorType dirIn, const VectorType dirOut)
{
m_uOrigin = posIn[2];
m_u2 = posOut[2]-m_uOrigin;
m_IntForSigmaSqTheta2 = Functor::SchulteMLP::IntegralForSigmaSqTheta ::GetValue(m_u2);
m_IntForSigmaSqTTheta2 = Functor::SchulteMLP::IntegralForSigmaSqTTheta::GetValue(m_u2);
m_IntForSigmaSqT2 = Functor::SchulteMLP::IntegralForSigmaSqT ::GetValue(m_u2);
// Parameters vectors
m_x0[0] = posIn[0];
m_x0[1] = std::atan(dirIn[0]); //dirIn[2] is implicitely 1.
m_x2[0] = posOut[0];
m_x2[1] = std::atan(dirOut[0]); //dirOut[2] is implicitely 1.
m_y0[0] = posIn[1];
m_y0[1] = std::atan(dirIn[1]); //dirIn[2] is implicitely 1.
m_y2[0] = posOut[1];
m_y2[1] = std::atan(dirOut[1]); //dirOut[2] is implicitely 1.
}
void
SchulteMLPFunction
::Evaluate( const double u, double &x, double &y, double &dx, double &dy )
{
#ifdef MLP_TIMING
m_EvaluateProbe1.Start();
#endif
const double u1 = u-m_uOrigin;
// Finish constructing rotation matrices (equations 11 and 14)
m_R0(0,1) = u1;
m_R1(0,1) = m_u2-u1;
m_R0T(1,0) = m_R0(0,1);
m_R1T(1,0) = m_R1(0,1);
itk::Matrix<double, 2, 2> R1T_Inv(m_R1T);
InverseMatrix(R1T_Inv);
itk::Matrix<double, 2, 2> R1_Inv(m_R1);
InverseMatrix(R1_Inv);
// Constants used in both integrals
const double intForSigmaSqTheta1 = Functor::SchulteMLP::IntegralForSigmaSqTheta ::GetValue(u1);
const double intForSigmaSqTTheta1 = Functor::SchulteMLP::IntegralForSigmaSqTTheta::GetValue(u1);
const double intForSigmaSqT1 = Functor::SchulteMLP::IntegralForSigmaSqT ::GetValue(u1);
// Construct Sigma1 (equations 6-9)
m_Sigma1(1,1) = intForSigmaSqTheta1/* - m_IntForSigmaSqTheta0*/;
m_Sigma1(0,1) = u1 * m_Sigma1(1,1) - intForSigmaSqTTheta1/* + m_IntForSigmaSqTTheta0*/;
m_Sigma1(1,0) = m_Sigma1(0,1);
m_Sigma1(0,0) = u1 * ( 2*m_Sigma1(0,1) - u1*m_Sigma1(1,1) ) + intForSigmaSqT1/* - m_IntForSigmaSqT0*/;
m_Sigma1 *= Functor::SchulteMLP::ConstantPartOfIntegrals::GetValue(m_u0,u1);
double sigma1 = std::sqrt(m_Sigma2(1,1));
// Construct Sigma2 (equations 15-18)
m_Sigma2(1,1) = m_IntForSigmaSqTheta2 - intForSigmaSqTheta1;
m_Sigma2(0,1) = m_u2 * m_Sigma2(1,1) - m_IntForSigmaSqTTheta2 + intForSigmaSqTTheta1;
m_Sigma2(1,0) = m_Sigma2(0,1);
m_Sigma2(0,0) = m_u2 * ( 2*m_Sigma2(0,1) - m_u2*m_Sigma2(1,1) ) + m_IntForSigmaSqT2 - intForSigmaSqT1;
m_Sigma2 *= Functor::SchulteMLP::ConstantPartOfIntegrals::GetValue(u1,m_u2);
#ifdef MLP_TIMING
m_EvaluateProbe2.Start();
#endif
itk::Vector<double, 2> xMLP;
itk::Vector<double, 2> yMLP;
if(m_considerTrackerUncertainties)
{
itk::Matrix<double, 2, 2> C1 = m_R0 * m_Sin * m_SigmaIn * m_SinT * m_R0T + m_Sigma1;
itk::Matrix<double, 2, 2> C2 = R1_Inv * m_Sout_Inv * m_SigmaOut * m_SoutT_Inv * R1T_Inv + R1_Inv * m_Sigma2 * R1T_Inv;
itk::Matrix<double, 2, 2> C1plusC2(C1 + C2);
InverseMatrix(C1plusC2);
itk::Matrix<double, 2, 2> factorIn(C2 * C1plusC2 * m_R0);
itk::Matrix<double, 2, 2> factorOut(C1 * C1plusC2 * R1_Inv);
xMLP = factorIn * m_x0 + factorOut * m_x2;
yMLP = factorIn * m_y0 + factorOut * m_y2;
}
else
{
// This version here is better than the previously implemented one
// because it avoids inverting the matrices Sigma.
// See comment in [Krah 2018, PMB]
itk::Matrix<double, 2, 2> sum1(R1_Inv * m_Sigma2 + m_Sigma1 * m_R1T);
InverseMatrix(sum1);
itk::Matrix<double, 2, 2> sum2(m_R1 * m_Sigma1 + m_Sigma2 * R1T_Inv);
InverseMatrix(sum2);
itk::Matrix<double, 2, 2> part1(R1_Inv * m_Sigma2 * sum1 * m_R0);
itk::Matrix<double, 2, 2> part2(m_Sigma1 * sum2);
xMLP = part1 * m_x0 + part2 * m_x2;
yMLP = part1 * m_y0 + part2 * m_y2;
}
x = xMLP[0];
dx = xMLP[1];
y = yMLP[0];
dy = yMLP[1];
#ifdef MLP_TIMING
m_EvaluateProbe1.Stop();
m_EvaluateProbe2.Stop();
#endif
}
void
SchulteMLPFunction
::EvaluateError( const double u, itk::Matrix<double, 2, 2> &error )
{
double x, y;
double dx, dy;
Evaluate(u,x,y,dx,dy);
error = m_Sigma1 + m_R1T * m_Sigma2 * m_R1;
InverseMatrix(error);
error *= 2.;
}
#ifdef MLP_TIMING
void
SchulteMLPFunction
::PrintTiming(std::ostream& os)
{
os << "SchulteMLPFunction timing:" << std::endl;
os << " EvaluateProbe1: " << m_EvaluateProbe1.GetTotal()
<< ' ' << m_EvaluateProbe1.GetUnit() << std::endl;
os << " EvaluateProbe2: " << m_EvaluateProbe2.GetTotal()
<< ' ' << m_EvaluateProbe2.GetUnit() << std::endl;
}
#endif
void
SchulteMLPFunction
::InverseMatrix(itk::Matrix<double, 2, 2> &mat)
{
double det = 1. / ( mat(0,0)*mat(1,1) - mat(0,1)*mat(1,0) );
std::swap( mat(0,0), mat(1,1) );
mat(1,0) *= -1.;
mat(0,1) *= -1.;
mat *= det;
}
}