forked from li-plus/seam-carving
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
42 lines (33 loc) · 1.32 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from pathlib import Path
import numpy as np
from PIL import Image
import seam_carving
ROOT = Path(__file__).resolve().parent.parent
PAD_WIDTH = 4
def main():
# scaling up & down
src = np.array(Image.open(ROOT / 'fig/castle.jpg'))
h, w, c = src.shape
scale_down = seam_carving.resize(src, (w - 200, h))
scale_up = seam_carving.resize(src, (w + 200, h))
padding = np.zeros((h, PAD_WIDTH, c), dtype=np.uint8)
merged = np.hstack((src, padding, scale_down, padding, scale_up))
Image.fromarray(merged).show()
# forward energy vs backward energy
src = np.array(Image.open(ROOT / 'fig/bench.jpg'))
h, w, c = src.shape
backward = seam_carving.resize(src, (w - 200, h))
forward = seam_carving.resize(src, (w - 200, h), energy_mode='forward')
padding = np.zeros((h, PAD_WIDTH, c), dtype=np.uint8)
merged = np.hstack((src, padding, backward, padding, forward))
Image.fromarray(merged).show()
# object removal
src = np.array(Image.open(ROOT / 'fig/beach.jpg'))
h, w, c = src.shape
mask = np.array(Image.open(ROOT / 'fig/beach_girl.png').convert('L'))
dst = seam_carving.remove_object(src, mask)
padding = np.zeros((h, PAD_WIDTH, c), dtype=np.uint8)
merged = np.hstack((src, padding, dst))
Image.fromarray(merged).show()
if __name__ == '__main__':
main()