-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathannotate_maker.py
74 lines (51 loc) · 2.14 KB
/
annotate_maker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import pandas as pd
import numpy as np
train = pd.read_csv('train.csv')
flip = pd.read_csv('FLIP.csv')
flip_rotate = pd.read_csv('FLIP_ROTATE.csv')
flip_scale = pd.read_csv('FLIP_SCALE.csv')
flip_shear = pd.read_csv('FLIP_SHEAR.csv')
flip_translate = pd.read_csv('FLIP_TRANSLATE.csv')
rotation = pd.read_csv('ROTATION.csv')
scaled = pd.read_csv('SCALED.csv')
shear = pd.read_csv('SHEAR.csv')
translated = pd.read_csv('TRANSLATED.csv')
det_scale = pd.read_csv('DET_SCALE.csv')
flip.columns = train.columns
train = train.append(flip, ignore_index = True)
flip_rotate.columns = train.columns
train = train.append(flip_rotate, ignore_index = True)
flip_scale.columns = train.columns
train = train.append(flip_scale, ignore_index = True)
flip_shear.columns = train.columns
train = train.append(flip_shear, ignore_index = True)
flip_translate.columns = train.columns
train = train.append(flip_translate, ignore_index = True)
rotation.columns = train.columns
train = train.append(rotation, ignore_index = True)
scaled.columns = train.columns
train = train.append(scaled, ignore_index = True)
shear.columns = train.columns
train = train.append(shear, ignore_index = True)
translated.columns = train.columns
train = train.append(translated, ignore_index = True)
det_scale.columns = train.columns
train = train.append(det_scale, ignore_index = True)
a = train.iloc[:, :].values
for i in range(0, len(a)):
a[i][1] = int(a[i][1])
a[i][2] = int(a[i][2])
a[i][3] = int(a[i][3])
a[i][4] = int(a[i][4])
column_list = list(train.columns)
train = pd.DataFrame(a)
train.columns = column_list
data = pd.DataFrame()
data['format'] = train['filename']
# as the images are in train_images folder, add train_images before the image name
for i in range(data.shape[0]):
data['format'][i] = 'train_images/' + data['format'][i]
# add xmin, ymin, xmax, ymax and class as per the format required
for i in range(data.shape[0]):
data['format'][i] = data['format'][i] + ',' + str(train['xmin'][i]) + ',' + str(train['ymin'][i]) + ',' + str(train['xmax'][i]) + ',' + str(train['ymax'][i]) + ',' + str(train['label'][i])
data.to_csv('annotate.txt', header = None, index = None)