forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbow_classifier.py
144 lines (116 loc) · 3.79 KB
/
bow_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Course URL:
# https://deeplearningcourses.com/c/natural-language-processing-with-deep-learning-in-python
# https://udemy.com/natural-language-processing-with-deep-learning-in-python
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier
# from gensim.models import KeyedVectors
# data from https://www.cs.umb.edu/~smimarog/textmining/datasets/
train = pd.read_csv('../large_files/r8-train-all-terms.txt', header=None, sep='\t')
test = pd.read_csv('../large_files/r8-test-all-terms.txt', header=None, sep='\t')
train.columns = ['label', 'content']
test.columns = ['label', 'content']
class GloveVectorizer:
def __init__(self):
# load in pre-trained word vectors
print('Loading word vectors...')
word2vec = {}
embedding = []
idx2word = []
with open('../large_files/glove.6B/glove.6B.50d.txt') as f:
# is just a space-separated text file in the format:
# word vec[0] vec[1] vec[2] ...
for line in f:
values = line.split()
word = values[0]
vec = np.asarray(values[1:], dtype='float32')
word2vec[word] = vec
embedding.append(vec)
idx2word.append(word)
print('Found %s word vectors.' % len(word2vec))
# save for later
self.word2vec = word2vec
self.embedding = np.array(embedding)
self.word2idx = {v:k for k,v in enumerate(idx2word)}
self.V, self.D = self.embedding.shape
def fit(self, data):
pass
def transform(self, data):
X = np.zeros((len(data), self.D))
n = 0
emptycount = 0
for sentence in data:
tokens = sentence.lower().split()
vecs = []
for word in tokens:
if word in self.word2vec:
vec = self.word2vec[word]
vecs.append(vec)
if len(vecs) > 0:
vecs = np.array(vecs)
X[n] = vecs.mean(axis=0)
else:
emptycount += 1
n += 1
print("Numer of samples with no words found: %s / %s" % (emptycount, len(data)))
return X
def fit_transform(self, data):
self.fit(data)
return self.transform(data)
class Word2VecVectorizer:
def __init__(self):
print("Loading in word vectors...")
self.word_vectors = KeyedVectors.load_word2vec_format(
'../large_files/GoogleNews-vectors-negative300.bin',
binary=True
)
print("Finished loading in word vectors")
def fit(self, data):
pass
def transform(self, data):
# determine the dimensionality of vectors
v = self.word_vectors.get_vector('king')
self.D = v.shape[0]
X = np.zeros((len(data), self.D))
n = 0
emptycount = 0
for sentence in data:
tokens = sentence.split()
vecs = []
m = 0
for word in tokens:
try:
# throws KeyError if word not found
vec = self.word_vectors.get_vector(word)
vecs.append(vec)
m += 1
except KeyError:
pass
if len(vecs) > 0:
vecs = np.array(vecs)
X[n] = vecs.mean(axis=0)
else:
emptycount += 1
n += 1
print("Numer of samples with no words found: %s / %s" % (emptycount, len(data)))
return X
def fit_transform(self, data):
self.fit(data)
return self.transform(data)
vectorizer = GloveVectorizer()
# vectorizer = Word2VecVectorizer()
Xtrain = vectorizer.fit_transform(train.content)
Ytrain = train.label
Xtest = vectorizer.transform(test.content)
Ytest = test.label
# create the model, train it, print scores
model = RandomForestClassifier(n_estimators=200)
model.fit(Xtrain, Ytrain)
print("train score:", model.score(Xtrain, Ytrain))
print("test score:", model.score(Xtest, Ytest))