-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_Off-the-shelf.py
248 lines (191 loc) · 12.4 KB
/
train_Off-the-shelf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os, csv, argparse
from datetime import datetime
import torch, yaml, wandb
from torchvision import transforms
from torchvision.models import vit_b_16, mobilenet_v2
from transformers import DeiTForImageClassification, ViTForImageClassification
from torch import nn, optim
from torch.utils.data import DataLoader
from torcheval.metrics.functional import multiclass_f1_score
from tqdm.auto import tqdm
from sklearn.metrics import f1_score
from configs.config import Config
from Off_the_shelfs.models import CustomNet
from RveRNets.datasets import ResizeAndPad, CustomImageDataset
from RveRNets.optimization import WarmupCosineSchedule
from RveRNets.utils import translate_list_to_str, remove_item_by_value
def train(config_path):
cfg = Config(config_path)
# wandb init
os.environ["WANDB_API_KEY"] = cfg.wandb_api_key
wandb.init(project=cfg.wandb_project, dir=cfg.wandb_logdir)
wandb.run.name = cfg.wandb_run
wandb.run.save()
device = torch.device(cfg.device if torch.cuda.is_available() else "cpu")
current_date = datetime.now().strftime("%Y%m%d") # Get the current date in YYYYMMDD format
## load the dict which contains the numeric definitions of categories
with open(cfg.class_dict, 'r') as stream:
try:
dataset_labl=yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
if cfg.ambiguity_test is False:
# If ambiguous classes are not trained together with the original dataset,
# remove the values corresponding to the class numbers from dataset_labl.
for value_to_remove in cfg.ambiguity_classes:
# Remove key-value pairs with the specified value
remove_item_by_value(dataset_labl, value_to_remove)
# Data preprocess and augmentation
data_transforms = {
'train': transforms.Compose([
ResizeAndPad(target_size=cfg.input_imgsz),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]),
'val': transforms.Compose([
ResizeAndPad(target_size=cfg.input_imgsz),
transforms.ToTensor(),
]),
}
# Initialize Custom train dataset
bs = cfg.batch_size
train_set = CustomImageDataset(cfg.data_for_net, dataset_labl, transform=data_transforms['train'])
trainloader = DataLoader(train_set, batch_size=bs, shuffle=True, num_workers=2)
# Initialize Custom valid dataset
val_set = CustomImageDataset(cfg.valset_for_net, dataset_labl, transform=data_transforms['val'])
valloader = DataLoader(val_set, batch_size=bs, shuffle=True)
label2cat = os.listdir(train_set.img_dir)
# Assuming output_size is defined (number of classes in your dataset)
output_size = len(label2cat) # able to replace with actual number of classes
# Create instances of backbones
backbones = {'mnet': mobilenet_v2(pretrained=True), 'vit' : vit_b_16(pretrained=True), 'deit': ViTForImageClassification.from_pretrained(cfg.deit_ver,cache_dir=cfg.deit_cache, num_labels=1000), 'deit-dist': DeiTForImageClassification.from_pretrained(cfg.deit_dist_ver,cache_dir=cfg.deit_cache, num_labels=1000)}
# Initialize Siamese Network
model = CustomNet(backbones[cfg.net], cfg.input_imgsz, output_size) #.to(device)
model.unfreeze()
model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
model.to(device)
# Initialize the Adam optimizer
optimizer = optim.Adam(model.parameters(), lr=cfg.learning_rate)
# Training and validation loop
num_epochs = cfg.num_epochs # Define the number of epochs
num_train_optimization_steps = int(len(train_set) / bs) * num_epochs
scheduler = WarmupCosineSchedule(optimizer,
warmup_steps=num_train_optimization_steps*0.1,
t_total=num_train_optimization_steps)
# Loss function
criterion = nn.CrossEntropyLoss()
# Directory where you want to save the models
save_dir = f"{cfg.model_save_path}_{current_date}"
os.makedirs(save_dir, exist_ok=True)
# Write the configurations of current run to txt file
cfg.export_to_txt(os.path.join(save_dir,'train_config.txt'))
# Open the CSV file
wfile = open(os.path.join(save_dir,'training_logs.csv'), mode='a', newline='')
writer = csv.writer(wfile)
if cfg.ambiguity_test:
writer.writerow(['Epoch', 'Training Loss', 'Training Accuracy', 'Training F1 Score', 'Validation Loss', 'Validation Accuracy', 'Validation F1 Score', 'Validation Accuracy (Classes %s)'%(translate_list_to_str(cfg.ambiguity_classes)), 'Validation F1 Score (Classes %s)'%(translate_list_to_str(cfg.ambiguity_classes))])
else:
writer.writerow(['Epoch', 'Training Loss', 'Training Accuracy', 'Training F1 Score', 'Validation Loss', 'Validation Accuracy', 'Validation F1 Score'])
for epoch in range(num_epochs):
############## Training phase ###################
model.train()
train_loss = 0.0
total_acc_train = 0
all_labels_train = []
all_predictions_train = []
train_loader = tqdm(trainloader, desc=f"Epoch {epoch+1}/{num_epochs} [Train]")
for inputs, labels, _ in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad() # initialization of grad
outputs = model(inputs)
acc = (outputs.argmax(dim=1) == labels).sum().item() # Sum up the number of correct predictions in the mini-batch
total_acc_train += acc # total_acc_train is the accuracy after the summation of all mini-batches
loss = criterion(outputs, labels) # loss function
loss.backward() # error backpropagation
optimizer.step() # Step the scheduler
train_loss += loss.item() # accumulation of the loss of every mini-batch
train_loader.set_postfix(loss=train_loss/len(trainloader))
# Accumulate labels and predictions for F1 score
all_labels_train.extend(labels.cpu().numpy())
all_predictions_train.extend(outputs.argmax(dim=1).cpu().numpy())
# Calculate F1 score for training
train_f1_score = multiclass_f1_score(torch.tensor(all_predictions_train), torch.tensor(all_labels_train), num_classes=len(label2cat))
############ Validation phase ########################
model.eval()
val_loss = 0.0
correct = 0
total = 0
if cfg.ambiguity_test:
correct_ambiguous_classes = 0
total_ambiguous_classes = 0
all_labels_val = []
all_predictions_val = []
val_loader = tqdm(valloader, desc=f"Epoch {epoch+1}/{num_epochs} [Validate]")
with torch.no_grad():
for inputs, labels, _ in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
val_loader.set_postfix(loss=val_loss/len(valloader))
mask_ambiguous_classes = 'init'
if cfg.ambiguity_test:
for cls_num in cfg.ambiguity_classes:
if mask_ambiguous_classes == 'init':
mask_ambiguous_classes = (labels == cls_num)
else:
mask_ambiguous_classes |= (labels == cls_num)
correct_ambiguous_classes += (predicted[mask_ambiguous_classes] == labels[mask_ambiguous_classes]).sum().item()
total_ambiguous_classes += mask_ambiguous_classes.sum().item()
# Accumulate labels and predictions for F1 score
all_labels_val.extend(labels.cpu().numpy())
all_predictions_val.extend(outputs.argmax(dim=1).cpu().numpy())
# Calculate F1 score for validation
val_f1_score = multiclass_f1_score(torch.tensor(all_predictions_val), torch.tensor(all_labels_val), num_classes=len(label2cat), average="macro")
val_accuracy = 100 * correct / total
if cfg.ambiguity_test:
# Calculate additional validation accuracy for ambiguous classes
val_accuracy_ambiguous_classes = 100 * correct_ambiguous_classes / total_ambiguous_classes
# Calculate F1 score for validation for classes ambiguous classes
val_f1_score_ambiguous_classes = f1_score(all_labels_val, all_predictions_val, labels=cfg.ambiguity_classes, average='macro')
print(f"Epoch {epoch+1}, Training Loss: {train_loss/len(trainloader):.4f}, | Accuracy: {total_acc_train / len(train_set)*100: .3f}%, Training F1 Score: {train_f1_score:.3f}, Validation Loss: {val_loss/len(valloader):.4f}, Validation Accuracy: {val_accuracy:.2f}%, Validation F1 Score: {val_f1_score:.3f}, Validation Accuracy (Classes {translate_list_to_str(cfg.ambiguity_classes)}): {val_accuracy_ambiguous_classes:.2f}%, Validation F1 Score (Classes {translate_list_to_str(cfg.ambiguity_classes)}): {val_f1_score_ambiguous_classes:.3f}")
wandb.log({"Epoch": epoch+1, "Training Loss": train_loss/len(trainloader), "Accuracy" : total_acc_train / len(train_set)*100, "Training F1 Score": train_f1_score, "Validation Loss" : val_loss/len(valloader), "Validation Accuracy" : val_accuracy, "Validation F1 Score" : val_f1_score, "Validation Accuracy (Classes %s)"%(translate_list_to_str(cfg.ambiguity_classes)): val_accuracy_ambiguous_classes, "Validation F1 Score (Classes %s)"%(translate_list_to_str(cfg.ambiguity_classes)) : val_f1_score_ambiguous_classes })
# Write metrics to CSV file
writer.writerow([
epoch + 1,
train_loss / len(trainloader),
total_acc_train / len(train_set) * 100,
train_f1_score.item(),
val_loss / len(valloader),
val_accuracy,
val_f1_score.item(),
val_accuracy_ambiguous_classes,
val_f1_score_ambiguous_classes.item()
])
else:
print(f"Epoch {epoch+1}, Training Loss: {train_loss/len(trainloader):.4f}, | Accuracy: {total_acc_train / len(train_set)*100: .3f}%, Training F1 Score: {train_f1_score:.3f}, Validation Loss: {val_loss/len(valloader):.4f}, Validation Accuracy: {val_accuracy:.2f}%, Validation F1 Score: {val_f1_score:.3f}")
wandb.log({"Epoch": epoch+1, "Training Loss": train_loss/len(trainloader), "Accuracy" : total_acc_train / len(train_set)*100, "Training F1 Score": train_f1_score, "Validation Loss" : val_loss/len(valloader), "Validation Accuracy" : val_accuracy, "Validation F1 Score" : val_f1_score })
# Write metrics to CSV file
writer.writerow([
epoch + 1,
train_loss / len(trainloader),
total_acc_train / len(train_set) * 100,
train_f1_score.item(),
val_loss / len(valloader),
val_accuracy,
val_f1_score.item()
])
scheduler.step()
if (epoch+1) % cfg.save_model_every == 0:
# Save the model
model_path = os.path.join(save_dir, f"{cfg.model_file_prefix}_epoch_{epoch+1}_{current_date}.pth")
torch.save(model.state_dict(), model_path) # Since the training was done with DataParallel, an additional 'module' key is added to the state_dict. Considering this, you need to load the model accordingly later. If you find this cumbersome, you can save the model using model.module.state_dict().
wfile.close()
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True,help='path to train_config file')
args = parser.parse_args()
train(args.config)