-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_lipmlp.py
153 lines (110 loc) · 5.21 KB
/
eval_lipmlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
import numpy as np
import jax.numpy as jnp
import jax.random as jrnd
from functools import partial
import sys
project_dir = os.path.abspath(os.path.dirname(__file__))
sys.path.append(project_dir)
os.chdir(project_dir)
from datetime import datetime
from dataclasses import dataclass, field
from typing import Optional, Callable
from pyhocon import ConfigFactory
import argparse
from tqdm import tqdm
from orbax.checkpoint import CheckpointManagerOptions, CheckpointManager, PyTreeCheckpointer
import orbax.checkpoint as ocp
from flax.training import orbax_utils
# from flax import serialization
from models.plot_manager import PlotManager
import utils.general as utils
import utils.mesh_utils as mesh_utils
from models.utils import normalize_params
@dataclass
class CustomCheckpointMangerOptions(CheckpointManagerOptions):
save_interval_steps: int = 1000
# name of metric to use for checkpointing
best_metric: Optional[str] = None
def setup(args):
modeldir = args.modeldir
conf_path = os.path.join(modeldir,'runconf.conf')
conf = ConfigFactory.parse_file(conf_path)
conf.T = args.steps
utils.mkdir_ifnotexists(os.path.join(modeldir, 'interp'))
plots_dir = os.path.abspath(os.path.join(modeldir, 'interp'))
checkpoint_option = CustomCheckpointMangerOptions(**conf.check_point)
checkpoint_manager = CheckpointManager(
directory=os.path.join(modeldir,'checkpoints'),
checkpointers=PyTreeCheckpointer(),
options=checkpoint_option
)
plot_manager = PlotManager(
directory=plots_dir,
resolution=args.mc_resolution,
f_batch_size=10000
)
dataset = utils.get_class(conf.dataset_class)(**conf.datasets)
return conf, checkpoint_manager, plot_manager, dataset
def eval_all(conf, checkpoint_manager, plot_manager, dataset):
np.random.seed(conf.training.rng_seed)
key = jrnd.PRNGKey(conf.training.rng_seed)
implicit_net = utils.get_class(conf.implicit_class)(**conf.network.implicit_net)
learning_rate_fn = partial(
utils.step_learning_rate_decay,
initial=conf.training.initial,
interval=conf.training.interval,
factor=conf.training.factor)
model = utils.get_class(conf.method)(**conf.loss)
key, = jrnd.split(key, 1)
implicit_train_state = model.model_init(key, learning_rate_fn, implicit_net, conf.network.implicit_net)
try:
step = checkpoint_manager.latest_step()
target = {'model':implicit_train_state, 'index': 0, 'pair': [0,1], 'upper':np.array([0.5,0.8,0.4]), 'lower': np.array([-0.5,-0.8,-0.4])}
restored = checkpoint_manager.restore(step, items=target)
implicit_train_state = restored['model']
pair = restored['pair']
lower = np.array([-0.5,-0.8,-0.4])
upper = np.array([0.5,0.8,0.4])
subindex = restored['index']
pair = restored['pair']
except TypeError:
print('failed to load model.....')
print(" interpolate for {0} -----> {1}...............".format(pair[0], pair[1]))
dptc_list = dataset.generate_pesudo_dptc(20000)
dptc_x, dptc_y = dataset.getitem(subindex, dptc_list)
bounding_box = mesh_utils.get_bounding_box(jnp.concatenate((dptc_x.points, dptc_y.points)))
prefix = dataset.mesh_paths[subindex][:-5] + '_'
plot_manager(lower=bounding_box[0], upper=bounding_box[1], vertex_size = len(dptc_x.verts), prefix=prefix)
# save gt shapes
plot_manager.save_points_ply(jnp.concatenate((dptc_x.verts, dptc_x.points)), normals=jnp.concatenate((dptc_x.verts_normals, dptc_x.points_normals)), output_file=prefix + '0_gt')
plot_manager.save_points_ply(jnp.concatenate((dptc_y.verts, dptc_y.points)), normals=jnp.concatenate((dptc_y.verts_normals, dptc_y.points_normals)), output_file=prefix + '1_gt')
if not args.skip_recon:
if conf.method[-3:] == 'Lip':
params_final = normalize_params(implicit_train_state.params)
implicit_fn = partial(implicit_train_state.apply_fn, params_final)
else:
implicit_fn = partial(implicit_train_state.apply_fn, implicit_train_state.params)
for time_step in range(conf.T+1):
print('interpolate step {0}...'.format(time_step))
t = time_step / conf.T
mesh = plot_manager.extract_mesh(implicit_fn, t)
filename = plot_manager.prefix + '_time_' + str(time_step).zfill(2) + '_mesh'
plot_manager.save_ply(mesh, filename)
print('done.')
if __name__ == "__main__":
def list_of_ints(arg):
return list(map(int, arg.split(',')))
parser = argparse.ArgumentParser()
parser.add_argument('--modeldir', type=str, default='./exp/fit_fraust/')
parser.add_argument('--steps', type=int, default=5)
parser.add_argument('--mc_resolution',type=int, default=256)
parser.add_argument('--skip_recon', action='store_true')
args = parser.parse_args()
conf, checkpoint_manager, plot_manager, dataset = setup(
args
)
eval_all(conf, checkpoint_manager, plot_manager, dataset)