-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathapp.py
101 lines (87 loc) · 3.65 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import whisper
from moviepy.editor import VideoFileClip, concatenate_videoclips
import requests
import json
import ast
# Step 1: Transcribe the Video
def transcribe_video(video_path, model_name="base"):
model = whisper.load_model(model_name)
audio_path = "temp_audio.wav"
os.system(f"ffmpeg -i {video_path} -ar 16000 -ac 1 -b:a 64k -f mp3 {audio_path}")
result = model.transcribe(audio_path)
transcription = []
for segment in result['segments']:
transcription.append({
'start': segment['start'],
'end': segment['end'],
'text': segment['text'].strip()
})
return transcription
def get_relevant_segments(transcript, user_query):
prompt = f"""You are an expert video editor who can read video transcripts and perform video editing. Given a transcript with segments, your task is to identify all the conversations related to a user query. Follow these guidelines when choosing conversations. A group of continuous segments in the transcript is a conversation.
Guidelines:
1. The conversation should be relevant to the user query. The conversation should include more than one segment to provide context and continuity.
2. Include all the before and after segments needed in a conversation to make it complete.
3. The conversation should not cut off in the middle of a sentence or idea.
4. Choose multiple conversations from the transcript that are relevant to the user query.
5. Match the start and end time of the conversations using the segment timestamps from the transcript.
6. The conversations should be a direct part of the video and should not be out of context.
Output format: {{ "conversations": [{{"start": "s1", "end": "e1"}}, {{"start": "s2", "end": "e2"}}] }}
Transcript:
{transcript}
User query:
{user_query}"""
url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer groq-key"
}
data = {
"messages": [
{
"role": "system",
"content": prompt
}
],
"model": "llama-3.1-70b-versatile",
"temperature": 1,
"max_tokens": 1024,
"top_p": 1,
"stream": False,
"stop": None
}
response = requests.post(url, headers=headers, json=data)
data = response.json()["choices"][0]["message"]["content"]
conversations = ast.literal_eval(data)["conversations"]
return conversations
def edit_video(original_video_path, segments, output_video_path, fade_duration=0.5):
video = VideoFileClip(original_video_path)
clips = []
for seg in segments:
start = seg['start']
end = seg['end']
clip = video.subclip(start, end).fadein(fade_duration).fadeout(fade_duration)
clips.append(clip)
if clips:
final_clip = concatenate_videoclips(clips, method="compose")
final_clip.write_videofile(output_video_path, codec="libx264", audio_codec="aac")
else:
print("No segments to include in the edited video.")
# Main Function
def main():
# Paths
input_video = "input_video.mp4"
output_video = "edited_output.mp4"
# User Query
user_query = "Find all clips where there is discussion around GPT-4 Turbo"
# Step 1: Transcribe
print("Transcribing video...")
transcription = transcribe_video(input_video, model_name="base")
relevant_segments = get_relevant_segments(transcription, user_query)
# Step 5: Edit Video
print("Editing video...")
edit_video(input_video, relevant_segments, output_video)
print(f"Edited video saved to {output_video}")
if __name__ == "__main__":
main()