-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabstract.tex
9 lines (6 loc) · 882 Bytes
/
abstract.tex
1
2
3
4
5
6
% ================================================================================
\begin{abstract}
%\blindtext[1]
We present a simple algorithm for the \texttt{3SUM} problem for a list $L$ of $n$ real numbers. For this, we generate real numbers with the help of a set $\mathbb{I}_{a}$ of so called 'Atomic irrational numbers'. We can show that our algorithm, which use the binary representation of integers, takes time complexity $\mathcal{O}\left(nb + U^{1.58}\right)$ for an universe of $U := 2^{b}$ distinguishable rational numbers and with our so generated real numbers it takes a time complexity of $\mathcal{O}\left(nb|\mathbb{I}_{a}| + U^{1.58}_{\mathbb{I}_{a}}\right)$ on an universe of $U_{\mathbb{I}_{a}} := 2^{b |\mathbb{I}_{a}|}$ distinguishable real numbers.
\end{abstract}
% ================================================================================