-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathaffectnet8_test.py
143 lines (113 loc) · 5.33 KB
/
affectnet8_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import sys
import argparse
import numpy as np
import torch
from torchvision import transforms, datasets
import torch.utils.data as data
from networks.DDAM import DDAMNet
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import itertools
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--aff_path', type=str, default='/data/affectnet/', help='AffectNet dataset path.')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size.')
parser.add_argument('--workers', default=8, type=int, help='Number of data loading workers.')
parser.add_argument('--num_head', type=int, default=2, help='Number of attention head.')
parser.add_argument('--num_class', type=int, default=8, help='Number of class.')
parser.add_argument('--model_path', default = './checkpoints/affecnet8.pth')
return parser.parse_args()
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, fontsize=16)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j]*100, fmt)+'%',
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('Actual', fontsize=18)
plt.xlabel('Predicted', fontsize=18)
plt.tight_layout()
class7_names = ['Neutral', 'Happy', 'Sad', 'Surprise', 'Fear', 'Disgust', 'Angry']
class8_names = ['Neutral', 'Happy', 'Sad', 'Surprise', 'Fear', 'Disgust', 'Angry', 'Contempt']
def run_test():
args = parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = DDAMNet(num_class=args.num_class, num_head=args.num_head, pretrained=False)
checkpoint = torch.load(args.model_path, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
data_transforms_val = transforms.Compose([
transforms.Resize((112, 112)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
val_dataset = datasets.ImageFolder(f'{args.aff_path}/val', transform = data_transforms_val) # loading statically
if args.num_class == 7: # ignore the 8-th class
idx = [i for i in range(len(val_dataset)) if val_dataset.imgs[i][1] != 7]
val_dataset = data.Subset(val_dataset, idx)
print('Validation set size:', val_dataset.__len__())
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size = args.batch_size,
num_workers = args.workers,
shuffle = False,
pin_memory = True)
iter_cnt = 0
bingo_cnt = 0
sample_cnt = 0
for imgs, targets in val_loader:
imgs = imgs.to(device)
targets = targets.to(device)
out,feat,heads = model(imgs)
_, predicts = torch.max(out, 1)
correct_num = torch.eq(predicts,targets)
bingo_cnt += correct_num.sum().cpu()
sample_cnt += out.size(0)
if iter_cnt == 0:
all_predicted = predicts
all_targets = targets
else:
all_predicted = torch.cat((all_predicted, predicts),0)
all_targets = torch.cat((all_targets, targets),0)
iter_cnt+=1
acc = bingo_cnt.float()/float(sample_cnt)
acc = np.around(acc.numpy(),4)
print("Validation accuracy:%.4f. " % ( acc))
if args.num_class == 7:
# Compute confusion matrix
matrix = confusion_matrix(all_targets.data.cpu().numpy(), all_predicted.cpu().numpy())
np.set_printoptions(precision=2)
plt.figure(figsize=(10, 8))
# Plot normalized confusion matrix
plot_confusion_matrix(matrix, classes=class7_names, normalize=True, title= 'affectnet Confusion Matrix (acc: %0.2f%%)' %(acc*100))
plt.savefig(os.path.join('checkpoints', "affecnet7"+"_acc"+str(acc)+".png"))
plt.close()
elif args.num_class == 8:
matrix = confusion_matrix(all_targets.data.cpu().numpy(), all_predicted.cpu().numpy())
np.set_printoptions(precision=2)
plt.figure(figsize=(10, 8))
plot_confusion_matrix(matrix, classes=class8_names, normalize=True, title= 'AffectNet Confusion Matrix (acc: %0.2f%%)' %(acc*100))
plt.savefig(os.path.join('checkpoints', "affecnet8"+"_acc"+str(acc)+".png"))
plt.close()
if __name__ == "__main__":
run_test()