-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMCC_withCentroidMIC.m
149 lines (135 loc) · 4.33 KB
/
MCC_withCentroidMIC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
S = regionprops(bw,'Centroid') ;
[Bound,~,~,~] = bwboundaries(bw) ;
%%
X = Bound{2,1}(:,2) ;
Y = Bound{2,1}(:,1) ;
% plot(Ax10,X,Y,'b','LineWidth',1.25) ;
%% Distance
for i = 1:length(X)
D(i,1) = pdist([S.Centroid(1) S.Centroid(2) ; X(i) Y(i)]) ;
end
base_ind = find(D == max(D)) ;
XX = [X(base_ind(1)+1:end) ; X(1:base_ind(1))] ;
YY = [Y(base_ind(1)+1:end) ; Y(1:base_ind(1))] ;
DD = [D(base_ind(1)+1:end) ; D(1:base_ind(1))] ;
X = XX ; Y = YY ; D = DD ;
%% Optional
[xData, yData] = prepareCurveData([],D) ;
ft = fittype('smoothingspline') ;
opts = fitoptions('Method','SmoothingSpline') ;
opts.SmoothingParam = 0.9 ;
[Fit,~] = fit(xData,yData,ft,opts) ;
D = Fit(xData) ;
%% Main Algorithm
N = 5 ; % Maximum Cluster
M = 3 ; % Neigber
Tfactor = 0.94 ;
while N>1
r = 0 ;
whileCond1 = true ;
x = X ; y = Y ;
while whileCond1
[K,~] = kmeans([x,y],N) ;
% Show
% for i = 1:N
% plot(Ax10,X(K==i),Y(K==i),'Marker','*','Color',rand(1,3),'LineStyle','none') ;
% pause(0.1)
% end
MICPoints = [] ;
for i = 1:N
indx = find(D == min(D(K == i))) ;
MIPoints(i,:) = [x(indx(1)) y(indx(1))] ;
for j = 1:M
Lside(j,:) = [x(indx(1)-j) y(indx(1)-j)] ;
end
for j = 1:M
Rside(j,:) = [x(indx(1)+j) y(indx(1)+j)] ;
end
% Show
% MPoints = [MIPoints ; Lside ; Rside] ;
% plot(Ax10,MPoints(:,1),MPoints(:,2),'*y') ;
MICPoints = [MICPoints ; MIPoints ; Lside ; Rside] ;
end
CentMIC = CircleFitByLandau(MICPoints) ;
r = r + 1 ;
rmic(r) = CentMIC(3) ;
xmic(r) = round(CentMIC(1)) ;
ymic(r) = round(CentMIC(2)) ;
clc
% disp([num2str((((5-N)*r + r)/(5*15))*100,'%.2f') '%'])
disp(N)
disp(r)
if ~isnan(rmic(r)) % Main Constraction
LCentMIC(r) = CheckCenterInGrain(bw,xmic(r),ymic(r)) ;
if LCentMIC(r) == true
[LCircMIC(r) , emic(r)] = CheckCircleInGrain(bw,xmic(r),ymic(r),rmic(r),Tfactor) ;
end
else
LCentMIC(r) = false ;
LCircMIC(r) = false ;
emic(r) = 0 ;
end
if r == 7 & all(emic < Tfactor)
for i = 1:length(x)
D(i,1) = pdist([S.Centroid(1) S.Centroid(2) ; X(i) Y(i)]) ;
end
base_ind = find(D == max(D)) ;
XX = [x(base_ind(1)+1:end) ; x(1:base_ind(1))] ;
YY = [y(base_ind(1)+1:end) ; y(1:base_ind(1))] ;
DD = [D(base_ind(1)+1:end) ; D(1:base_ind(1))] ;
x = XX ; y = YY ; D = DD ;
end
if r > 14
whileCond1 = false ;
end
end % introier while
All_rmic = rmic(LCircMIC) ;
All_xmic = xmic(LCircMIC) ;
All_ymic = ymic(LCircMIC) ;
All_emic = emic(LCircMIC) ;
if ~isempty(All_rmic)
Nindex = find(max(All_rmic) == All_rmic) ;
rMIC(N) = All_rmic(Nindex(1)) ;
eMIC(N) = All_emic(Nindex(1)) ;
xMIC(N) = All_xmic(Nindex(1)) ;
yMIC(N) = All_ymic(Nindex(1)) ;
else
rMIC(N) = nan ;
xMIC(N) = nan ;
yMIC(N) = nan ;
eMIC(N) = nan ;
end
N = N-1 ;
end % Main Loop
%%
w1 = 1 ; w2 = 3 ;
Ne = normalize(w2*eMIC,'range') ;
Nr = normalize(w1*rMIC,'range') ;
Nc = normalize(Nr .*Ne,'range') ;
MIC_index = find(Nc == max(Nc)) ; % best
RMIC = rMIC(MIC_index(1)) ;
EMIC = eMIC(MIC_index(1)) ;
XMIC = xMIC(MIC_index(1)) ;
YMIC = yMIC(MIC_index(1)) ;
%%
[Bound,Lab,~,~] = bwboundaries(bw) ;
bw = Lab == 1 ;
X = Bound{2,:}(:,2) ;
Y = Bound{2,:}(:,1) ;
S = regionprops(~bw,'Centroid') ;
for i = 1:length(X)
DMCC(i,1) = pdist([XMIC YMIC ; X(i) Y(i)]) ;
end
% Smooth
[xData , yData] = prepareCurveData([],DMCC) ;
ft = fittype('smoothingspline') ;
opts = fitoptions('Method','SmoothingSpline') ;
opts.SmoothingParam = 0.9 ;
[Fit,~] = fit(xData,yData,ft,opts) ;
DMCC = Fit(xData) ;
% relocate
base_ind = find(DMCC == min(DMCC)) ;
XX = [X(base_ind(1)+1:end) ; X(1:base_ind(1))] ;
YY = [Y(base_ind(1)+1:end) ; Y(1:base_ind(1))] ;
DD = [DMCC(base_ind(1)+1:end) ; DMCC(1:base_ind(1))] ;
X = XX ; Y = YY ; DMCC = DD ;