-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
63 lines (55 loc) · 1.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from src.utils.trainUtils import trainOneEpoch, testOneEpoch
from src.utils.misc import printParams, WeightInitializer
from src.utils.transforms import Resize, Normalization
from src.utils.labelConverter import CTCLabelConverter
from src.nn.ocr_model import RecognizerNetwork
from src.utils.dataset import DataGenerator
from torchvision.transforms import Compose
from torch.utils.data import DataLoader
from src.utils.misc import plotHistory
import config as cfg
import torch
def printConfigVars(module, fname):
pa = [item for item in dir(module) if not item.startswith("__")]
for item in pa:
value = eval(f'{fname}.{item}')
if str(type(value)) not in ("<class 'module'>", "<class 'function'>"):
print(f"{fname}.{item} : {eval(f'{fname}.{item}')}")
printConfigVars(cfg, 'cfg')
device = cfg.device
trainds = DataGenerator(
root = cfg.ds_path["train_ds"],
transforms = Compose([
Resize((cfg.img_h, cfg.img_w)),
Normalization()
])
); trian_dataloader = DataLoader(trainds, cfg.batch_size, True)
testds = DataGenerator(
root = cfg.ds_path["test_ds"],
transforms = Compose([
Resize((cfg.img_h, cfg.img_w)),
Normalization()
])
); test_dataloader = DataLoader(testds, cfg.batch_size, True)
model = RecognizerNetwork(cfg).to(device)
WeightInitializer(model)
opt = torch.optim.Adam(model.parameters(), lr=cfg.learning_rate, betas=cfg.betas)
printParams(model, "OCR model trainable params : {:,}")
converter = CTCLabelConverter(cfg)
log = {"train":[], "val":[]}
for epoch in range(cfg.epochs):
train_loss = trainOneEpoch(
model,
trian_dataloader,
converter, opt,
device, epoch
)
val_loss = testOneEpoch(
model,
test_dataloader,
converter, device, epoch
)
log["train"].append(train_loss)
log["val"].append(val_loss)
torch.save(model.state_dict(), "test.pth")
plotHistory(log)