-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrenderProbability.R
394 lines (391 loc) · 26.8 KB
/
renderProbability.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
renderProbability <- function(input, output, session) {
output$probability <- renderText({
distType <- input$Distribution
plotrange <- c(0, 0)
probrange <- c(0, 0)
if (input$numericalValues == FALSE) {
plotrange[1] <- input$plotrange[1]
plotrange[2] <- input$plotrange[2]
probrange[1] <- input$probrange[1]
probrange[2] <- input$probrange[2]
} else {
plotrange[1] <- input$plotrangeNumMin
plotrange[2] <- input$plotrangeNumMax
probrange[1] <- input$probrangeNumMin
probrange[2] <- input$probrangeNumMax
}
# ----------------------- Discrete: Anderson Darling Distribution ----------------------- #
if (distType == distributions[1]) {
prob <- getCDF_AD(as.numeric(probrange[2])) - getCDF_AD(as.numeric(probrange[1]))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: ArcSine Distribution ----------------------- #
else if (distType == distributions[2]) {
prob <- parcsine(as.numeric(probrange[2]), as.numeric(input$ArcSineA), as.numeric(input$ArcSineB)) - parcsine(as.numeric(probrange[1]), as.numeric(input$ArcSineA), as.numeric(input$ArcSineB))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Benford Distribution ----------------------- #
else if (distType == distributions[3]) {
prob <- pBenf(round(as.numeric(probrange[2]), 0), as.numeric(input$Benfn)) - pBenf(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$Benfn))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Bernoulli Distribution ----------------------- #
else if (distType == distributions[4]) {
prob <- pbern(round(as.numeric(probrange[2]), 0), as.numeric(input$BernProb)) - pbern(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$BernProb))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Beta Distribution ----------------------- #
else if (distType == distributions[5]) {
prob <- pbeta(as.numeric(probrange[2]), as.numeric(input$BetaAlpha), as.numeric(input$BetaBeta)) - pbeta(as.numeric(probrange[1]), as.numeric(input$BetaAlpha), as.numeric(input$BetaBeta))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Beta(Generalized) Distribution ----------------------- #
else if (distType == distributions[6]) {
prob <- pgenbeta(as.numeric(probrange[2]), as.numeric(input$BetaGenA), as.numeric(input$BetaGenB), as.numeric(input$BetaGenC), as.numeric(input$BetaGenP)) - pgenbeta(as.numeric(probrange[1]), as.numeric(input$BetaGenA), as.numeric(input$BetaGenB), as.numeric(input$BetaGenC), as.numeric(input$BetaGenP))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Beta Binomial Distribution ----------------------- #
else if (distType == distributions[7]) {
prob <- pbbinom(round(as.numeric(probrange[2]), 0), as.numeric(input$BetaBinomN), as.numeric(input$BetaBinomU), as.numeric(input$BetaBinomV)) - pbbinom(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$BetaBinomN), as.numeric(input$BetaBinomU), as.numeric(input$BetaBinomV))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Binomial Distribution ----------------------- #
else if (distType == distributions[8]) {
prob <- pbinom(round(as.numeric(probrange[2]), 0), as.numeric(input$BinomN), as.numeric(input$BinomP)) - pbinom(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$BinomN), as.numeric(input$BinomP))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Birthday Distribution ----------------------- #
else if (distType == distributions[9]) {
prob <- getCDF_Birt(as.numeric(probrange[2])) - getCDF_Birt(as.numeric(probrange[1]))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Bivariate Normal Distribution (3D) ----------------------- #
else if (distType == distributions[10]) {
prob <- pmnorm(cbind(as.numeric(probrange[2]), as.numeric(probrange[2])), c(as.numeric(input$BivaM1), as.numeric(input$BivaM2)), matrix(c(as.numeric(input$BivaV1), as.numeric(input$BivaCov), as.numeric(input$BivaCov), as.numeric(input$BivaV2)), 2))
-pmnorm(cbind(as.numeric(probrange[1]), as.numeric(probrange[1])), c(as.numeric(input$BivaM1), as.numeric(input$BivaM2)), matrix(c(as.numeric(input$BivaV1), as.numeric(input$BivaCov), as.numeric(input$BivaCov), as.numeric(input$BivaV2)), 2))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Cauchy Distribution ----------------------- #
else if (distType == distributions[11]) {
prob <- pcauchy(as.numeric(probrange[2]), as.numeric(input$CauchyX0), as.numeric(input$CauchyGamma)) - pcauchy(as.numeric(probrange[1]), as.numeric(input$CauchyX0), as.numeric(input$CauchyGamma))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Chi Distribution ----------------------- #
else if (distType == distributions[12]) {
prob <- pchi(as.numeric(probrange[2]), as.numeric(input$ChiK)) - pchi(as.numeric(probrange[1]), as.numeric(input$ChiK))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Chi Square Distribution ----------------------- #
else if (distType == distributions[13]) {
prob <- pchisq(as.numeric(probrange[2]), as.numeric(input$Chi2n)) - pchisq(as.numeric(probrange[1]), as.numeric(input$Chi2n))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Chi Square Non Central Distribution ----------------------- #
else if (distType == distributions[14]) {
prob <- pt(as.numeric(probrange[2]), as.numeric(input$TNCdof), as.numeric(input$TNCNCP)) - pt(as.numeric(probrange[1]), as.numeric(input$TNCdof), as.numeric(input$TNCNCP))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Continuous Uniform Distribution ----------------------- #
else if (distType == distributions[16]) {
prob <- punif(as.numeric(probrange[2]), as.numeric(input$UnifMin), as.numeric(input$UnifMax)) - punif(as.numeric(probrange[1]), as.numeric(input$UnifMin), as.numeric(input$UnifMax))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Discrete ArcSine Distribution ----------------------- #
else if (distType == distributions[19]) {
prob <- parcsine(round(as.numeric(probrange[2]), 0), as.numeric(input$DisArcSineA), as.numeric(input$DisArcSineB)) - parcsine(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$DisArcSineA), as.numeric(input$DisArcSineB))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Discrete Uniform Distribution ----------------------- #
else if (distType == distributions[20]) {
prob <- punif(round(as.numeric(probrange[2]), 0), as.numeric(input$DisUnifMin), as.numeric(input$DisUnifMax)) - punif(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$DisUnifMin), as.numeric(input$DisUnifMax))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Erlang Distribution ----------------------- #
else if (distType == distributions[21]) {
prob <- pErlang(round(as.numeric(probrange[2]), 0), as.numeric(input$ErlangScale), as.numeric(input$ErlangShape)) - pErlang(round(as.numeric(probrange[1]), 0), as.numeric(input$ErlangScale), as.numeric(input$ErlangShape))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Error Distribution ----------------------- #
else if (distType == distributions[22]) {
prob <- pError(round(as.numeric(probrange[2]), 0), as.numeric(input$ErrorLocation), as.numeric(input$ErrorScale), as.numeric(input$ErrorShape)) - pError(round(as.numeric(probrange[1]), 0), as.numeric(input$ErrorLocation), as.numeric(input$ErrorScale), as.numeric(input$ErrorShape))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Exponential Distribution ----------------------- #
else if (distType == distributions[23]) {
prob <- Rlab::pexp(as.numeric(probrange[2]), as.numeric(input$ExpLambda)) - Rlab::pexp(as.numeric(probrange[1]), as.numeric(input$ExpLambda))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: F Distribution ----------------------- #
else if (distType == distributions[25]) {
prob <- pf(as.numeric(probrange[2]), as.numeric(input$FdOne), as.numeric(input$FdTwo)) - pf(as.numeric(probrange[1]), as.numeric(input$FdOne), as.numeric(input$FdTwo))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Gamma Distribution ----------------------- #
else if (distType == distributions[27]) {
prob <- Rlab::pgamma(as.numeric(probrange[2]), shape = as.numeric(input$GammaA), rate = as.numeric(input$GammaB)) - Rlab::pgamma(as.numeric(probrange[1]), shape = as.numeric(input$GammaA), rate = as.numeric(input$GammaB))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: General Cauchy Distribution ----------------------- #
else if (distType == distributions[28]) {
prob <- pGeneralCauchy(as.numeric(probrange[2]), as.numeric(input$GeneralCauchyAlpha), as.numeric(input$GeneralCauchyBeta)) - pGeneralCauchy(as.numeric(probrange[1]), as.numeric(input$GeneralCauchyAlpha), as.numeric(input$GeneralCauchyBeta))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Generalized Extreme Value (GEV) Distribution ----------------------- #
else if (distType == distributions[29]) {
prob <- pgev(as.numeric(probrange[2]), as.numeric(input$GEVMiu), as.numeric(input$GEVSigma), as.numeric(input$GEVEpsilon)) - pgev(as.numeric(probrange[1]), as.numeric(input$GEVMiu), as.numeric(input$GEVSigma), as.numeric(input$GEVEpsilon))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Geometric Distribution ----------------------- #
else if (distType == distributions[30]) {
prob <- pgeom(round(as.numeric(probrange[2]), 0), as.numeric(input$GeomProb)) - pgeom(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$GeomProb))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Gilbrats Distribution ----------------------- #
else if (distType == distributions[31]) {
prob <- pGilbrats(as.numeric(probrange[2]), as.numeric(input$GilbratsMu), as.numeric(input$GilbratsSigma)) -
pGilbrats(as.numeric(probrange[1]), as.numeric(input$GilbratsMu), as.numeric(input$GilbratsSigma))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Gompertz Distribution ----------------------- #
else if (distType == distributions[32]) {
prob <- pgompertz(as.numeric(plotrange[2]), as.numeric(input$Gompertz_N), as.numeric(input$Gompertz_B)) - pgompertz(as.numeric(plotrange[1]), as.numeric(input$Gompertz_N), as.numeric(input$Gompertz_B))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Gumbel Distribution ----------------------- #
else if (distType == distributions[33]) {
prob <- pgumbel(as.numeric(probrange[2]), as.numeric(input$Gumbel_U), as.numeric(input$Gumbel_Beta)) - pgumbel(as.numeric(probrange[1]), as.numeric(input$Gumbel_U), as.numeric(input$Gumbel_Beta))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Half Normal Distribution ----------------------- #
else if (distType == distributions[34]) {
prob <- phnorm(as.numeric(probrange[2]), as.numeric(input$HNorm)) - phnorm(as.numeric(probrange[1]), as.numeric(input$HNorm))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Hyper Geometric Distribution ----------------------- #
else if (distType == distributions[35]) {
prob <- phyper(round(as.numeric(probrange[2]), 0), as.numeric(input$HyperM), as.numeric(input$HyperN) - as.numeric(input$HyperM), as.numeric(input$HyperK)) - phyper(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$HyperM), as.numeric(input$HyperN) - as.numeric(input$HyperM), as.numeric(input$HyperK))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Hyperbolic-Secant Distribution ----------------------- #
else if (distType == distributions[36]) {
prob <- psech(as.numeric(probrange[2]), as.numeric(input$HSmu), as.numeric(input$HSsigma)) -
psech(as.numeric(probrange[1]), as.numeric(input$HSmu), as.numeric(input$HSsigma))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Inverse Gamma Distribution ----------------------- #
else if (distType == distributions[37]) {
prob <- pinvgamma(as.numeric(probrange[2]), as.numeric(input$InvGammaA), 1 / as.numeric(input$InvGammaB)) - pinvgamma(as.numeric(probrange[1]), as.numeric(input$InvGammaA), 1 / as.numeric(input$InvGammaB))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Inverse Gaussian(Wald) Distribution ----------------------- #
else if (distType == distributions[38]) {
prob <- pinvgauss(as.numeric(probrange[2]), as.numeric(input$InvGausM), as.numeric(input$InvGausL)) - pinvgauss(as.numeric(probrange[1]), as.numeric(input$InvGausM), as.numeric(input$InvGausL))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Johnson SB (Bounded) Distribution ----------------------- #
else if (distType == distributions[39]) {
prob <- pJohnsonSB(as.numeric(probrange[2]), as.numeric(input$JohnSBgamma), as.numeric(input$JohnSBdelta), as.numeric(input$JohnSBxi), as.numeric(input$JohnSBlambda)) - pJohnsonSB(as.numeric(probrange[1]), as.numeric(input$JohnSBgamma), as.numeric(input$JohnSBdelta), as.numeric(input$JohnSBxi), as.numeric(input$JohnSBlambda))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Johnson SU (Unbounded) Distribution ----------------------- #
else if (distType == distributions[40]) {
prob <- pJohnsonSU(as.numeric(probrange[2]), as.numeric(input$JohnSUgamma), as.numeric(input$JohnSUdelta), as.numeric(input$JohnSUxi), as.numeric(input$JohnSUlambda)) - pJohnsonSU(as.numeric(probrange[1]), as.numeric(input$JohnSUgamma), as.numeric(input$JohnSUdelta), as.numeric(input$JohnSUxi), as.numeric(input$JohnSUlambda))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Laplace Distribution ----------------------- #
else if (distType == distributions[42]) {
prob <- plaplace(as.numeric(probrange[2]), as.numeric(input$LapMu), as.numeric(input$LapSig)) - plaplace(as.numeric(probrange[1]), as.numeric(input$LapMu), as.numeric(input$LapSig))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Logarithmic Series Distribution ----------------------- #
else if (distType == distributions[43]) {
prob <- 0
for (i in (round(max(1, as.numeric(plotrange[1])), 0):round(max(as.numeric(plotrange[2]),10)))) {
prob <- prob + dlogseries(i, as.numeric(input$LogP))
}
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Logistic Distribution ----------------------- #
else if (distType == distributions[44]) {
prob <- plogis(as.numeric(probrange[2]), as.numeric(input$LogiA), as.numeric(input$LogiB)) - plogis(as.numeric(probrange[1]), as.numeric(input$LogiA), as.numeric(input$LogiB))
paste("Prob. = ", prob, sep = "")
}
#-----------------------Continuous: Logistic-Exponential Distribution ----------------------- #
else if (distType == distributions[45]) {
prob <- 0
Beta <- as.numeric(input$LogEx_B)
Alpha <- as.numeric(input$LogEx_A)
if (as.numeric(probrange[2]) <= 0 && as.numeric(probrange[1]) <= 0) {
prob <- 0
} else if (as.numeric(probrange[1]) <= 0) {
prob <- ((exp(Alpha * (as.numeric(probrange[2]))) - 1)**Beta) / (1 + (exp(Alpha * (as.numeric(probrange[2]))) - 1)**Beta)
} else if (as.numeric(probrange[1]) > 0 && as.numeric(probrange[2]) > 0) {
prob <- ((exp(Alpha * (as.numeric(probrange[2]))) - 1)**Beta) / (1 + (exp(Alpha * (as.numeric(probrange[2]))) - 1)**Beta)
-((exp(Alpha * (as.numeric(probrange[1]))) - 1)**Beta) / (1 + (exp(Alpha * (as.numeric(probrange[1]))) - 1)**Beta)
}
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: LogNormal Distribution ----------------------- #
else if (distType == distributions[46]) {
prob <- plnorm(as.numeric(probrange[2]), as.numeric(input$LogNormMean), as.numeric(input$LogNormSD)) - plnorm(as.numeric(probrange[1]), as.numeric(input$LogNormMean), as.numeric(input$LogNormSD))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Lomax Distribution ----------------------- #
else if (distType == distributions[47]) {
prob <- plomax(as.numeric(probrange[2]), as.numeric(input$LomaxLamda), as.numeric(input$LomaxKappa)) - plomax(as.numeric(probrange[1]), as.numeric(input$LomaxLamda), as.numeric(input$LomaxKappa))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Matching Distribution ----------------------- #
else if (distType == distributions[48]) {
prob <- pMatch(as.numeric(probrange[2])) - pMatch(as.numeric(probrange[1]))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Maxwell Distribution ----------------------- #
else if (distType == distributions[49]) {
prob <- pmaxwell(as.numeric(probrange[2]), as.numeric(input$MaxwellA)) - pmaxwell(as.numeric(probrange[1]), as.numeric(input$MaxwellA))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Minimax Distribution ----------------------- #
else if (distType == distributions[50]) {
prob <- 0
Beta <- as.numeric(input$Mini_B)
Gamma <- as.numeric(input$Mini_V)
if (as.numeric(probrange[2]) >= 1 && as.numeric(probrange[1]) <= 0) {
prob <- 1
} else if (as.numeric(probrange[2]) <= 0 && as.numeric(probrange[1]) <= 0) {
prob <- 0
} else if (as.numeric(probrange[2]) >= 1 && as.numeric(probrange[1]) >= 1) {
prob <- 1
} else if (as.numeric(probrange[2]) >= 1) {
prob <- 1 - (1 - (1 - (as.numeric(probrange[1]))**Beta)**(Gamma))
} else if (as.numeric(probrange[1]) <= 0) {
prob <- 1 - (1 - (as.numeric(probrange[2]))**Beta)**(Gamma)
} else {
prob <- 1 - (1 - (as.numeric(probrange[2]))**Beta)**(Gamma) - (1 - (1 - (as.numeric(probrange[1]))**Beta)**(Gamma))
}
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Muth Distribution ----------------------- #
else if (distType == distributions[53]) {
K <- as.numeric(input$MuthKappa)
prob <- 0
if (as.numeric(probrange[2]) <= 0 && as.numeric(probrange[1]) <= 0) {
prob <- 0
} else if (as.numeric(probrange[2]) <= 0) {
prob <- 0
} else if (as.numeric(probrange[1]) <= 0) {
prob <- 1 - exp(-(exp(K * as.numeric(probrange[2]))) / K + K * as.numeric(probrange[2]) + 1 / K)
} else {
prob <- (1 - exp(-(exp(K * as.numeric(probrange[2]))) / K + K * as.numeric(probrange[2]) + 1 / K)) - (1 - exp(-(exp(K * as.numeric(probrange[1]))) / K + K * as.numeric(probrange[1]) + 1 / K))
}
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Negatvie Binomial Distribution ----------------------- #
else if (distType == distributions[54]) {
prob <- pnbinom(round(as.numeric(probrange[2]), 0), as.numeric(input$NegBiR), as.numeric(input$NegBiP)) - pnbinom(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$NegBiR), as.numeric(input$NegBiP))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Negatvie HyperGeometric Distribution ----------------------- #
else if (distType == distributions[55]) {
prob <- pnhyper(round(as.numeric(probrange[2]), 0), as.numeric(input$NegHyperK) - as.numeric(input$NegHyperN), as.numeric(input$NegHyperN), as.numeric(input$NegHyperR)) - pnhyper(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$NegHyperK) - as.numeric(input$NegHyperN), as.numeric(input$NegHyperN), as.numeric(input$NegHyperR))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Normal Distribution ----------------------- #
else if (distType == distributions[57]) {
prob <- pnorm(as.numeric(probrange[2]), as.numeric(input$NormMean), as.numeric(input$NormSD)) - pnorm(as.numeric(probrange[1]), as.numeric(input$NormMean), as.numeric(input$NormSD))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Normal Truncated Distribution ----------------------- #
else if (distType == distributions[58]) {
prob <- ptruncnorm(as.numeric(probrange[2]), as.numeric(input$TruncNormMin), as.numeric(input$TruncNormMax), as.numeric(input$TruncNormMean), as.numeric(input$TruncNormSD)) - ptruncnorm(as.numeric(probrange[1]), as.numeric(input$TruncNormMin), as.numeric(input$TruncNormMax), as.numeric(input$TruncNormMean), as.numeric(input$TruncNormSD))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Pareto Distribution ----------------------- #
else if (distType == distributions[59]) {
prob <- ppareto(as.numeric(probrange[2]), as.numeric(input$ParetoA), as.numeric(input$ParetoB)) - ppareto(as.numeric(probrange[1]), as.numeric(input$ParetoA), as.numeric(input$ParetoB))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Poisson Distribution ----------------------- #
else if (distType == distributions[61]) {
prob <- ppois(round(as.numeric(probrange[2]), 0), as.numeric(input$PoiLambda)) - ppois(round(as.numeric(probrange[1]), 0) - 1, as.numeric(input$PoiLambda))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Poker Dice Distribution ----------------------- #
else if (distType == distributions[62]) {
prob <- getCDF_PD(as.numeric(probrange[2])) - getCDF_PD(as.numeric(probrange[1]))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Power Function Distribution ----------------------- #
else if (distType == distributions[63]) {
prob <- ppower(round(as.numeric(probrange[2]), 0), as.numeric(input$PowerAlpha), as.numeric((input$PowerBeta))) - ppower(round(as.numeric(probrange[1]), 0), as.numeric(input$PowerAlpha), as.numeric((input$PowerBeta)))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Rayleigh Distribution ----------------------- #
else if (distType == distributions[64]) {
prob <- prayleigh(as.numeric(probrange[2]), as.numeric(input$RayleighSigma)) - prayleigh(as.numeric(probrange[1]), as.numeric(input$RayleighSigma))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Rice Distribution -------------------- #
else if (distType == distributions[65]) {
prob <- price(as.numeric(probrange[2]), as.numeric(input$RiceSigma), as.numeric(input$RiceVee)) - Rlab::pweibull(as.numeric(probrange[1]), as.numeric(input$RiceSigma), as.numeric(input$RiceVee))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: T Distribution ----------------------- #
else if (distType == distributions[66]) {
prob <- pt(as.numeric(probrange[2]), as.numeric(input$Tdof)) - pt(as.numeric(probrange[1]), as.numeric(input$Tdof))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: T Non Central Distribution ----------------------- #
else if (distType == distributions[67]) {
prob <- pt(as.numeric(probrange[2]), as.numeric(input$TNCdof), as.numeric(input$TNCNCP)) - pt(as.numeric(probrange[1]), as.numeric(input$TNCdof), as.numeric(input$TNCNCP))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Triangular Distribution ----------------------- #
else if (distType == distributions[68]) {
prob <- ptriangular(as.numeric(probrange[2]), as.numeric(input$Triangular_A), as.numeric(input$Triangular_B), as.numeric(input$Triangular_C)) - ptriangular(as.numeric(probrange[1]), as.numeric(input$Triangular_A), as.numeric(input$Triangular_B), as.numeric(input$Triangular_C))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Two-Sided Power Distribution ----------------------- #
else if (distType == distributions[69]) {
prob <- getCDF_TSP(as.numeric(probrange[2])) - getCDF_TSP(as.numeric(probrange[1]))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: U-quadratic distribution ----------------------- #
else if (distType == distributions[70]) {
prob <- 0
W <- as.numeric(input$UQ_W)
C <- as.numeric(input$UQ_C)
if (as.numeric(probrange[2]) >= W + C && as.numeric(probrange[1] <= C - W)) {
prob <- 1
} else if (as.numeric(probrange[2]) <= C - W && as.numeric(probrange[1] <= C - W)) {
prob <- 0
} else if (as.numeric(probrange[2]) >= W + C) {
prob <- 1 - 0.5 * (1 + ((as.numeric(probrange[1]) - C) / W)**3)
} else if (as.numeric(probrange[1] <= C - W)) {
prob <- 0.5 * (1 + ((as.numeric(probrange[2]) - C) / W)**3)
} else {
prob <- 0.5 * (1 + ((as.numeric(probrange[2]) - C) / W)**3) - 0.5 * (1 + ((as.numeric(probrange[1]) - C) / W)**3)
}
paste("Prob. = ", prob, sep = "")
} else if (distType == distributions[71]) {
prob <- circular::pvonmises(as.numeric(probrange[2]), as.numeric(input$vonMisesMu), as.numeric(input$vonMisesKappa)) -
circular::pvonmises(as.numeric(probrange[1]), as.numeric(input$vonMisesMu), as.numeric(input$vonMisesKappa))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Walk Max Distribution ----------------------- #
else if (distType == distributions[72]) {
prob <- pWalkMax(as.numeric(probrange[2]), as.numeric(input$WalkMaxSteps)) - pWalkMax(as.numeric(probrange[1]), as.numeric(input$WalkMaxSteps))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Continuous: Weibull Distribution ----------------------- #
else if (distType == distributions[74]) {
prob <- Rlab::pweibull(as.numeric(probrange[2]), as.numeric(input$WeibullK), as.numeric(input$WeibullLambda)) - Rlab::pweibull(as.numeric(probrange[1]), as.numeric(input$WeibullK), as.numeric(input$WeibullLambda))
paste("Prob. = ", prob, sep = "")
}
# ----------------------- Discrete: Zipf-Mandelbrot Distribution -------------------- #
else if (distType == distributions[75]) {
prob <- pzipfman(round(as.numeric(probrange[2]), 0), as.numeric(input$Zipf_s), as.numeric(input$Zipf_q), as.numeric(input$Zipf_N)) - pzipfman(round(as.numeric(probrange[1]), 0), as.numeric(input$Zipf_s), as.numeric(input$Zipf_q), as.numeric(input$Zipf_N))
paste("Prob. = ", prob, sep = "")
}
})
}