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Abstract— This paper presents a nonlinear control law for
an automobile to autonomously track a trajectory, provided in
real-time, on rapidly varying, off-road terrain. Existing methods
can suffer from a lack of global stability, a lack of tracking
accuracy, or a dependence on smooth road surfaces, any one of
which could lead to the loss of the vehicle in autonomous off-
road driving. This work treats automobile trajectory tracking
in a new manner, by considering the orientation of the front
wheels – not the vehicle’s body – with respect to the desired
trajectory, enabling collocated control of the system. A steering
control law is designed using the kinematic equations of motion,
for which global asymptotic stability is proven. This control law
is then augmented to handle the dynamics of pneumatic tires
and of the servo-actuated steering wheel. To control vehicle
speed, the brake and throttle are actuated by a switching
proportional integral (PI) controller. The complete control
system consumes a negligible fraction of a computer’s resources.
It was implemented on a Volkswagen Touareg, “Stanley”, the
Stanford Racing Team’s entry in the DARPA Grand Challenge
2005, a 132 mi autonomous off-road race. Experimental results
from Stanley demonstrate the ability of the controller to track
trajectories between obstacles, over steep and wavy terrain,
through deep mud puddles, and along cliff edges, with a typical
root mean square (RMS) crosstrack error of under 0.1 m. In
the DARPA National Qualification Event 2005, Stanley was the
only vehicle out of 40 competitors to not hit an obstacle or miss
a gate, and in the DARPA Grand Challenge 2005 Stanley had
the fastest course completion time.

I. INTRODUCTION

Autonomous automobile technology is a rapidly develop-
ing field, with interest in both academia and industry. A
historical emphasis in driving control system design has con-
sidered motion on paved, uniform surfaces, yielding many
high performance systems. There has been increasing interest
in making vehicles also capable of autonomous off-road
driving. Driving on such terrain poses additional challenges.
The control system must be able to handle rough and curvy
roads, and quickly varying terrain types, such as gravel, loose
sand, and mud puddles – while stably tracking trajectories
between closely spaced hazards. The vehicle must be able to
recover from large disturbances, without intervention.

This paper addresses these challenges by presenting a
nonlinear control law for an automobile to autonomously
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Fig. 1. Stanley, the Stanford Racing Team’s entry in the DARPA Grand
Challenge 2005, under autonomous control, with no human in the vehicle.

track a trajectory, provided in real-time, on rapidly varying,
off-road terrain. Automobile trajectory tracking is treated in a
new way, by considering the orientation of the front wheels –
not the vehicle’s body – with respect to the desired trajectory,
enabling collocated control of the system. A control law is
designed using the kinematic equations of motion, for which
global asymptotic stability is proven. It is then augmented
to handle the dynamics of pneumatic tires and of the servo-
actuated steering wheel. To control vehicle speed, the brake
and throttle are actuated by a switching proportional inte-
gral (PI) controller. The controller consumes a negligible
fraction of a computer’s resources. It was implemented on
an autonomous Volkswagen Touareg, “Stanley”, the Stanford
Racing Team’s entry in the DARPA Grand Challenge 2005, a
132 mile off-road race without a human in the vehicle. Using
this controller, Stanley had the fastest completion time in the
race, averaging 19.1 mph. Results from hundreds of miles
of testing demonstrate the ability of the controller to track
trajectories between obstacles, over steep and wavy terrain,
through deep mud puddles, and along cliff edges, with a
typical root mean square (RMS) crosstrack error of under
0.1 m. The top speed tested on Stanley was 42 mph on a
dirt road, an upperbound of speed needed to race. Stanley’s
successor for the DARPA Urban Challenge, a Passat named
“Junior”, used the controller to drive 71 mph at Moffett Field.

For on-road automobile driving, many researchers have
used the bicycle model with linearized states to design
trajectory tracking controllers with consideration for the
pneumatic tires[1]. For instance, in [2], the GMC Jimmy was
controlled with a PID controller, with the linearized system



dynamics proven robustly stable. In experiments, it exhibited
tight tracking up to 25 mph. In the California PATH project,
a linear controller was used, and demonstrated tracking
up to 78 mph[3]. Demonstrations were given of driving
7.6 mi autonomously on the highway, reaching 60 mph, using
magnetic markers for tracking. The lateral control law used a
lookahead distance for the error metric[4]. A motivation for
using lookahead distance is given in [5]. Lookahead distance
was also used in [6], with potential fields, to provide driver
assistance steering. Without driver intervention, this steering
assistance controller has more error on curves than previous
systems, but bounds on this error are proven[5]. It was tested
at up to 50 mph. Although these on-road control laws have
achieved excellent accuracy, they are not designed for an off-
road environment. The vehicle must be able to recover from
large disturbances that would violate assumptions used for
linearization based methods.

There have been a number of recent off-road driving
projects. The NIST HMMWV has driven off-road at speeds
up to 22 mph, using clothoid trajectories to parameterize
a predictive controller[7]. It tracks the resulting trajectories
in open loop[8]. The system was demonstrated in a rolling
grassy field with trees. Tracking error increased with speed,
so required clearance distance from obstacles also increased
with speed. Another popular technique for off-road driving
has been controllers that “chase” a goal point using a PID
controller to point the front wheels toward a point ahead
on the trajectory. Without heuristic functions, this controller
is unstable at even moderate speeds, as discussed in [8]. It
can clip corners, and have poor disturbance rejection. This
technique has been successfully applied, including aboard
many vehicles at the DARPA Grand Challenge 2005. These
controllers have demonstrated poor performance in tight
curves, and unpredictable crosstrack error, as exemplified by
the results of the DARPA National Qualification Event 2005.

This paper proceeds by first presenting the two vehicle
models used for controller design, kinematic and dynamic.
Next, the trajectory tracking control laws are derived. Global
asymptotic stability is proven for the kinematic control law.
Finally, the results of months of field testing are given, with
experimental data from hundreds miles of off-road driving.

II. VEHICLE MODELS

This section describes two schemes used to model vehicle
motion. The first is the kinematic model, which assumes
the vehicle has negligible inertia. This permits design of a
controller which is globally stable under that assumption.
This assumption is effective for low speed driving[9]. The
second is the dynamic model, which includes inertial effects:
tire slip and steering servo actuation. This more complicated,
but more accurate, scheme permits simulation for tuning and
augmenting the controller to handle realistic dynamics.

A. Kinematic Model

The kinematic motion of an automobile, with speed v(t),
can be described with the crosstrack error, e(t), of the
guiding wheels, and the angle of those wheels with respect to

Fig. 2. Kinematic model of an automobile.

the nearest segment of trajectory to be tracked, (ψ(t)−δ (t)),
as in Figure 2. Here, ψ(t) is the yaw angle (heading) of
the vehicle with respect to the closest trajectory segment,
and δ (t) is the angle of the front wheels with respect to
the vehicle. This reference frame allows the actuator to act
directly on the error metric, yielding collocated sensing and
control. For forward driving, the guiding wheels are the front
wheels, and the derivative of the crosstrack error is

ė(t) = v(t)sin(ψ(t)−δ (t)) (1)

where the steering is mechanically limited to |δ (t)|< δmax.
The derivative of the yaw angle, the yaw rate, is

ψ̇(t) = r(t) =−v(t)sin(δ (t))
a+b

(2)

where a and b are the distance from the center of gravity
(CG) to the front and rear wheels, respectively.

Note that for reverse driving, the rear wheels can be treated
as the guiding wheels, yielding a useful parameterization that
will be discussed in Section III-A.

B. Dynamic Model
To model the nonlinear dynamic motion of the vehicle,

the effects of tire slip and of the steering servo motor are
considered. The relevant states of the vehicle are depicted
in Figure 3. The front and rear tire sets are modeled to
each provide a force, Fy f (t) and Fyr(t), perpendicular to the
rolling direction of the tire, and proportional to the angle,
α(t), between the its local velocity vector and its forward
direction. This is the bicycle model of the automobile[1],
where within the regime of planned driving,

Fy f (t) ≈ −Cyα f (t)
Fyr(t) ≈ −Cyαr(t)

where Cy is the tire stiffness of the tire pairs, and

α f (t) = arctan
(

Uy(t)+ r(t)a
Ux(t)

)
+δ (t)

αr(t) = arctan
(

Uy(t)− r(t)b
Ux(t)

)
with body fixed longitudinal and lateral velocities, Ux(t) and
Uy(t). This models the effect of tires deforming at a rate to
provide their force. The differential equations of motion are

m(U̇x(t)− r(t)Uy(t)) = Fxr +Fx f cosδ (t)+Fy f sinδ (t)
m(U̇y(t)+ r(t)Ux(t)) = Fyr−Fx f sinδ (t)+Fy f cosδ (t)

Izṙ(t) =−aFx f (t)sinδ (t)+aFy f (t)cosδ −bFyr(t)
(3)



Fig. 3. States of the automobile for the dynamic model.

where Fx f (t) and Fxr(t) are the components of force provided
by the front and rear tires, respectively, in their direction of
rolling. The value of Cy was found for the Touareg, with
off-road tires, to be 145 kN

rad , by matching experimental and
simulation results, to accurately predict motion.

The steering wheel cannot immediately match the com-
manded angle. Rather, there is a delay, dependent on the
inertia of the steering column, the servo system, and com-
munication delays. Experimentally, a first order model,

δ̇ (t) = τ
−1(δc(t)−δ (t)) (4)

was found to accurately model the dynamics seen in the
steering wheel’s response. The time delay, τ , was 0.4 s for
simulation, a conservative value based on experiments.

III. TRACKING CONTROL LAWS

This section details the lateral and longitudinal control
laws. They take the vehicle state and the commanded trajec-
tory as inputs, and output commands at a fixed rate, 20 Hz
for Stanley. The estimator, using GPS and inertial sensors,
provides the vehicle’s state. Only a subset of the commanded
trajectory is used: the location, orientation, curvature, and
speed of the segment of trajectory closest to the front tires.

A. Lateral Control

This controller provides closed loop tracking of the desired
vehicle path, as determined by the path planner, on quickly
varying, potentially rough terrain, with resilience to any
errors in the state. This section proceeds by determining
a partial control law, given the kinematic equations of
motion. Then, global asymptotic stability is proven, under
the assumption of kinematic motion. Next, the control law
is augmented to improve stability and tracking on the real
system, by considering the dynamic equations of motion.

By inspecting Equations (1) and (2), a controller is se-
lected such that the resulting differential equation has a
globally asymptotically stable equilibrium at zero crosstrack
error, as given in Theorem 1.

Theorem 1: For the kinematic equations of motion, given
by Equations (1) and (2), using the steering control law,

δ (t)=


ψ(t)+ arctan k e(t)

v(t) if |ψ(t)+ arctan k e(t)
v(t) |< δmax

δmax if ψ(t)+ arctan k e(t)
v(t) ≥ δmax

−δmax if ψ(t)+ arctan k e(t)
v(t) ≤−δmax

(5)

results in a closed loop system with a globally asymptotically
stable equilibrium at e = 0 for v(t) > 0 and 0 < δmax < π

2 .
Proof:

Using the steering control law, Equation (5), there are three
regions in the phase space of e and ψ – input saturated high,
input saturated low, and nominal control, shown in Figure 4.
The center region is that under nominal control. Without
loss of generality, assume v(t) to be constant. The boundary
between regions in phase space is where the nominal steering
command, (ψ(t)+arctan k e(t)

v(t) ), is at the steering limit, so the
equation of this boundary, as a function of e, is

ψb(e) =−arctan
ke

v(t)
±δmax (6)

For the saturated low region, the phase space trajectories
and the boundary line are antisymmetric about the origin
to those of the saturated high region. So, without loss of
generality, consider the effect of saturation on Equations (1)
and (2) in the saturated high region,

ė(t) = v(t)sin(ψ(t)−δmax)

ψ̇(t) = −v(t)sin(δmax)
a+b

Because δmax > 0, ψ̇ < 0 in this region, and is constant, so
ψ(t) decreases linearly with time. In this region, ψ ≤ π , so
any state in this region will flow into the nominal region,
with boundary given by Equation (6), within finite time.

In the nominal region, substituting Equation (5) into the
kinematic equation of motion, Equation (1), yields

ė(t) = −v(t)sinarctan
(

ke(t)
v(t)

)
=

−ke(t)√
1+

(
ke(t)
v(t)

)2
(7)

Inside the nominal region, the sign of ė is always opposite
that of e, and for any e(t), |ė(t)| ∈ [ke(t),v(t)]. Thus, the
convergence rate of e(t) is between linear, with rate v(t),
and exponential, with rate k. Therefore, no orbits can be
contained in this region. From Equations (2) and (5), the
sign of ψ̇(t) is opposite that of (ψ(t)+arctan k e(t)

v(t) ), so ψ(t)

approaches arctan k e(t)
v(t) , which converges to 0. Therefore, the

origin is the only stable equilibrium in phase space.
For some values of coefficients, the state can transition

from the nominal region to the saturated regions, for suf-
ficiently large |ė| at the boundary. Transitions occur with-
out chattering along the boundary, because the state time
derivative is continuous everywhere except at ψ =±π , which
does not intersect the boundary, since |ψb(e)| < π ∀e ∈ R,
provided 0 < δmax < π

2 . Any state that flows into the saturated
regions will leave in finite time, as already shown. For a
transition to the saturated region at time t1, it must be shown
that when the state returns to the nominal region, at time t2,
that |e(t2)| < |e(t1)|. To show this, note that in this region,
ė(t) is an anti-symmetric function of ψ(t) about ψ = δmax,
ψ(t) is linearly decreasing, and ė(t) > 0 when ψ(t) > δmax.
Therefore, any state that transitions from the nominal region
into the saturated high region will flow to a maximum value
of e at ψ = δmax and return in a path that is symmetric in the



Fig. 4. Phase portrait of a vehicle driving with the steering control law with
a speed of v = 10 m

s , a gain of k = 2.5 1
s and a turning limit of δmax = 24◦.

The red lines mark the transition from saturated steering, above the top line
and below the bottom line, to normal control, between the two lines. In the
saturated region, ψ monotonically approaches the normal control region.
Inside the normal control region, |e| monotonically decreases.

phase portrait about the line ψ = δmax. Because the boundary
defined by Equation (6) is a monotonically decreasing, anti-
symmetric function of e about (ψ,e) = (δmax,0), when the
state flows back into the nominal region across that boundary,
on a symmetric path to its departure path, |e(t2)|< |e(t1)|.

In summary, in the saturated regions, the state transitions
to the nominal region in finite time. If the state transitions
from the nominal region to a saturated region, it returns
to the nominal region in finite time, with a lower value of
|e(t)|, without chatter on the boundary. In the nominal region,
|e(t)| converges with a rate between linear and exponential
to the only equilibrium, the origin. Therefore, the origin is
the globally asymptotically stable equilibrium of the system.

At large crosstrack error, this control law drives the vehicle
driving straight toward the trajectory. As crosstrack error
becomes small, Equation (7) is approximately ė(t) =−ke(t),
with time domain solution e(t) = exp(−kt). So, when the
vehicle is near the trajectory, it converges to the trajectory
exponentially with time constant k. This is a consequence
of multiplying k by 1

v(t) in the control law, similar to [10].
When the vehicle is facing the wrong direction, the steering
command is to turn at δmax in the direction resulting in the
shortest path to point forward again. Between these extremes,
the arctan function enables a smooth, stable transition.

Using the controller in Equation (5), the location of the
front wheels is actively controlled, but the yaw is not. The
tires act as dampers, providing reaction forces to sideways
velocities. At low speeds, this stabilizes the yaw dynamics,
however the magnitude of this reaction is inversely pro-
portional to speed. As speed increases, the damping effect
diminishes, creating a need for active damping. Through
simulation and experiment, negative feedback on yaw rate
was found to provide the best active damping, without im-
pacting tracking performance. Thus, kd,yaw(rmeas(t)−rtra j(t))
is added to the steering command, where kd,yaw is a tuned

gain, rtra j is the yaw rate for the trajectory, and rmeas is the
measured yaw rate.

The controller commands a steering servo. Time delay
and overshoot in the servo can cause instability. One way
to prevent this is to add kd,steer(δmeas(i)− δmeas(i + 1)) to
the steering command, where δmeas is the discrete time
measurement of the steering angle, and i is the index of the
measurement one control period earlier. This provides lead
control on the software side. The value of kd,steer is tuned
to be large enough to damp the steering wheel response, but
small enough to have minimal effect on performance.

Additional attention is required for curvy roads. Automo-
biles point inward on curves, to generate lateral acceleration
with the front and rear tires. The controller yaw setpoint
should be non-zero. The steady state yaw, ψss, relative to a
constant curvature path, can be found using sums of forces
and moments in Equation (3), yielding

ψss =
mv(t)rtra j(t)

Cy(1+ a
b )

= kagv(t)rtra j(t) (8)

where kag = m
Cy(1+ a

b ) . In simulations and experiments, using
this setpoint in the controller did not impact stability, but did
correctly turn the vehicle into turns to null crosstrack error.
It does not compensate for transients in trajectory curvature.

One final modification for driving at low speed prevents
the gain term k

v(t) from becoming so large that it is oversen-
sitive to noise on e(t). A tuned gain, kso f t , is added to the
denominator, permitting control to be arbitrarily soft at low
speeds. In experiments, kso f t = 1 m

s was found appropriate.
The complete steering law, compensating for dynamics, is

δ (t) = (ψ(t)−ψss(t))+ arctan k e(t)
kso f t+v(t)

+kd,yaw(rmeas− rtra j)+ kd,steer(δmeas(i)−δmeas(i+1))
(9)

with saturation at ±δmax. This control law was used without
fault on Stanley for hundreds of miles of testing for months
prior to the DARPA Grand Challenge race, and in the race.
The augmentations to the kinematic control law compensate
for dynamics not considered in deriving Equation (5), yield-
ing a controller that is stable and able to null crosstrack error,
up to the highest speeds tested—42 mph on a dirt road with
Stanley and 71 mph on pavement with Junior.

The same error metric and concepts can be used to steer
the vehicle in reverse, by using the rear tires as the guiding
wheels, and closing a loop around ψ(t); the orientation of
the rear tires. This was implemented and tested on Stanley
up to 15 mph off-road, yielding similar performance to [11].

B. Longitudinal Control

The longitudinal controller receives speed requests from:
the trajectory planner, a safety speed recommender, and a
health monitor. The controller uses the minimum of these
speeds as its setpoint. It treats the brake cylinder pressure and
throttle level as two opposing, single-acting actuators that ex-
ert a longitudinal force on the car. Experiments showed that
this is almost exactly true for the brake system. It was found



to be an acceptable simplification of the throttle system. The
controller computes a single proportional integral (PI) error
metric, at discrete control iteration i+1,

ev(i+1) = kp,v(v(i+1)− vc(i+1))+ ki,veint(i+1) (10)

where the integral term is given by

eint(i+1) = eint(i+1)+(v(i+1)− vc(i+1)) (11)

and vc is the commanded speed. The values of kp,v and ki,v
determine the trade-off between disturbance rejection and
overshoot. The integral term is saturated to prevent windup.

This opposing, single-acting actuator system can be sus-
ceptible to chatter and deadbands, as handled in [12]. Here,
a different approach is used, with few modeling assump-
tions. When the error metric is positive, the brake system
commands a brake cylinder pressure proportional to the
PI error metric, and when it is negative, the throttle level
is set proportional to the negative of the PI error metric.
Analysis using a phase portrait [13] demonstrates that this
method solves the chatter and deadband problem. To achieve
the commanded brake pressure, the control input for the
nonlinear, hysteretic brake pressure cylinders is commanded
using saturated proportional feedback on the brake pressure.

IV. EXPERIMENTAL RESULTS

Hundred of miles of road tests were conducted using the
presented controller between February and October 2005,
using the Volkswagen Touareg “Stanley”, a 1.9 m wide SUV,
with 0.25 m wide off-road tires. Typical speeds were 5 to
35 mph. For details on system architecture, see [14]. The
controller ran on a Pentium-M 1.6 GHz computer, consuming
negligible resources. For most experiments, humans were in
the vehicle to intervene if necessary. Once the initial control
system was completed in March 2005, it did not lead to any
interventions. The results of several test categories follow.1

A. Off-Road Tests

One test took place in the desert in Arizona. The course
was a loop of gravel road with erosion on steep grades.
See Figure 5 for the course and results. It contained fast
straightaways and a winding road that climbs, crests, and
descends a steep hillside. The crosstrack error had a mean
of 0.003 m, and standard deviation and RMS error of 0.02 m.
It contained an obstacle that was swerved around at 25 mph.

Another test took place in the Mojave Desert, at the
DARPA Grand Challenge 2004 course. These qualitative
results address several scenarios. First, puddles (≥ 0.1 m in
depth) were encountered following spring rains. Although
they caused sliding, the controller compensated, with maxi-
mum crosstrack error of 0.2 to 0.5 m, depending on puddle
depth, the road curvature, and the speed. Puddles were
traversed up to speeds of 15 mph, covering the windshield in
water, but maintaining sub 0.2 m accuracy in straightaways.
In dry conditions, as expected, transitions into and out of

1Experimental results from Junior are omitted here, as they are prelimi-
nary, and for on-road driving. The main preliminary result is the ability to
drive up to 71 mph without degradation in accuracy.
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Fig. 5. Stanley log data from a test course in the desert in Arizona. The
road was gravel of varying quality. A steep, windy portion in the middle
demonstrates tracking on a road with large slopes and erosion.
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Fig. 6. Histograms of lateral crosstrack errors for various experiments.

curves caused higher crosstrack error, due to the changing
angular rate of the trajectory, which is not fed forward into
the controller. This was strongly observed when the vehicle
swerved around obstacles at 35 mph. Although the rear
wheels slid out, the controller kept the front wheels in line
with the road, counter steering, as is appropriate. The worst
crosstrack error observed in testing was approximately 1.5 m,
caused by skidding around a corner on gravel at 20 mph.

B. Endurance Test

This experiment was an endurance test of the vehicle at
Volkswagen’s Arizona Proving Grounds, on a closed loop
dirt track, with obstacles. The loop was 2.3 miles long, and
was repeated 88 times, for a total of 200.1 mi of autonomous
driving. The mean crosstrack error was 0.02 m, and the RMS
crosstrack error and standard deviation were 0.08 m. The
results are summarized in Figure 6.

C. DARPA Grand Challenge Desert Race

The DARPA Grand Challenge consisted of the “National
Qualification Event” (NQE), at the Ontario Speedway, fol-
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lowed by the “Grand Challenge Event” (GCE), a 132 mi race
across Nevada desert and mountains, starting and ending in
Primm, NV, with no drivers in the vehicles[15]. A chase truck
with DARPA officials followed every vehicle, with a remote
kill switch. The NQE contained obstacles and simulated
difficult terrain. In one characteristic run, shown in Figure 7,
the mean crosstrack error was 0.01 m, and the RMS error
and standard deviation were 0.05 m. In the GCE, shown
in Figure 8, the mean crosstrack error was −0.06 m, the
standard deviation was 0.09 m, and the RMS error was 0.1 m.
The cause for the larger than normal offset is unknown,
but is likely an error in calibration of the steering angle.
The offset is only 1/5 the width of a tire. Stanley finished
the race in 6 hours, 53 minutes and 58 seconds, averaging
19.1 mph. The maximum speed traveled was 38.0 mph. The
0.1 m RMS error is less than half a tire width, demonstrating
the ability to autonomously follow a demanding off-road
course with sufficient accuracy to safely track trajectories
between hazards, around obstacles, and along cliff edges.

V. CONCLUSION

A nonlinear control law was presented for an automobile
to autonomously track a trajectory, provided in real-time, on
rapidly varying off-road terrain, by controlling the orientation
of the front wheels with respect to the desired trajectory,
enabling collocated control of the system. Global asymptotic
stability was proven for the control law, using kinematic
equations of motion. Augmentations allow it to handle the
dynamics of pneumatic tires and servo-actuated steering. The
speed controller uses a switching proportional integral (PI)
controller, designed to prevent chatter. The control laws con-
sume negligible computing resources. Experimental results
demonstrate the ability to accurately track trajectories in a
variety of off-road settings, between hazards, and over rough
and curvy roads, with a typical RMS crosstrack error of
under 0.1 m. Stanley was the only vehicle not to hit obstacles
during the DARPA National Qualification Event, and had
the fastest completion time in the DARPA Grand Challenge
2005, averaging 19.1 mph on desert and mountainous terrain.
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