-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
executable file
·151 lines (121 loc) · 5.55 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
Based on https://github.com/asanakoy/kaggle_carvana_segmentation
"""
import os
import cv2
import numpy as np
import torch
import torch.utils.data as data
def randomHueSaturationValue(image, hue_shift_limit=(-180, 180),
sat_shift_limit=(-255, 255),
val_shift_limit=(-255, 255), u=0.5):
if np.random.random() < u:
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(image)
hue_shift = np.random.randint(hue_shift_limit[0], hue_shift_limit[1] + 1)
hue_shift = np.uint8(hue_shift)
h += hue_shift
sat_shift = np.random.uniform(sat_shift_limit[0], sat_shift_limit[1])
s = cv2.add(s, sat_shift)
val_shift = np.random.uniform(val_shift_limit[0], val_shift_limit[1])
v = cv2.add(v, val_shift)
image = cv2.merge((h, s, v))
# image = cv2.merge((s, v))
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
return image
def randomShiftScaleRotate(image, mask,
shift_limit=(-0.25, 0.25), # [-0.25, 1.25]
scale_limit=(-0.25, 0.25), # [-0.25, 1.25]
rotate_limit=(-3.14, 3.14), # [-3.14,3.14]
aspect_limit=(-0.25, 0.25), # [-0.25, 1.25]
borderMode=cv2.BORDER_CONSTANT, u=0.5):
if np.random.random() < u:
height, width, channel = image.shape
angle = np.random.uniform(rotate_limit[0], rotate_limit[1]) # - 3.14 ~ 3.14
scale = np.random.uniform(1 + scale_limit[0], 1 + scale_limit[1]) # -0.25, +1.25
aspect = np.random.uniform(1 + aspect_limit[0], 1 + aspect_limit[1]) # -0.25, +0.25
sx = scale * aspect / (aspect ** 0.5)
sy = scale / (aspect ** 0.5)
dx = round(np.random.uniform(shift_limit[0], shift_limit[1]) * width)
dy = round(np.random.uniform(shift_limit[0], shift_limit[1]) * height)
cc = np.math.cos(angle / 180 * np.math.pi) * sx
ss = np.math.sin(angle / 180 * np.math.pi) * sy
rotate_matrix = np.array([[cc, -ss], [ss, cc]])
box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ])
box1 = box0 - np.array([width / 2, height / 2])
box1 = np.dot(box1, rotate_matrix.T) + np.array([width / 2 + dx, height / 2 + dy])
box0 = box0.astype(np.float32)
box1 = box1.astype(np.float32)
mat = cv2.getPerspectiveTransform(box0, box1)
image = cv2.warpPerspective(image, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=borderMode,
borderValue=(
0, 0,
0,))
mask = cv2.warpPerspective(mask, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=borderMode,
borderValue=(
0, 0,
0,))
return image, mask
def randomHorizontalFlip(image, mask, u=0.5):
if np.random.random() < u:
image = cv2.flip(image, 1)
mask = cv2.flip(mask, 1)
return image, mask
def randomVerticleFlip(image, mask, u=0.5):
if np.random.random() < u:
image = cv2.flip(image, 0)
mask = cv2.flip(mask, 0)
return image, mask
def randomRotate90(image, mask, u=0.5):
if np.random.random() < u:
image = np.rot90(image)
mask = np.rot90(mask)
return image, mask
def default_load(id, root):
img = cv2.imread(os.path.join(root, '{}_sat.jpg').format(id))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
mask = cv2.imread(os.path.join(root + '{}_mask.png').format(id), cv2.IMREAD_GRAYSCALE)
img = randomHueSaturationValue(img,
hue_shift_limit=(-30, 30),
sat_shift_limit=(-5, 5),
val_shift_limit=(-15, 15))
img, mask = randomShiftScaleRotate(img, mask,
shift_limit=(-0.1, 0.1),
scale_limit=(-0.1, 0.1),
aspect_limit=(-0.1, 0.1),
rotate_limit=(-0, 0))
img, mask = randomHorizontalFlip(img, mask)
img, mask = randomVerticleFlip(img, mask)
img, mask = randomRotate90(img, mask)
mask = np.expand_dims(mask, axis=2)
# img = np.array(img, np.float32).transpose(2,0,1)/255.0
img = np.array(img, np.float32).transpose(2, 0, 1) / 255.0 * 3.2 - 1.6
mask = np.array(mask, np.float32).transpose(2, 0, 1) / 255.0
mask[mask >= 0.5] = 1
mask[mask <= 0.5] = 0
# mask = abs(mask-1)
return img, mask
class ImageFolder(data.Dataset):
def __init__(self, trainlist, root, crop_size=(1024, 1024)):
if type(crop_size) is tuple:
crop_size = list(crop_size)
self.ids = trainlist
self.load = default_load
self.root = root
self.crop_size = crop_size
def __getitem__(self, index):
id = self.ids[index]
img, mask = self.load(id, self.root)
img = torch.Tensor(img)
mask = torch.Tensor(mask)
if self.crop_size[0] >= 1024:
return img, mask
y, x = torch.randint(low=0, high=1024 - int(self.crop_size[0]) - 1, size=(2,))
w, h = torch.Tensor(self.crop_size)
y = int(y)
x = int(x)
croped_img = img[:, y:int(y + h), x:int(x + w)]
croped_mask = mask[:, y:int(y + h), x:int(x + w)]
return croped_img, croped_mask
def __len__(self):
return len(list(self.ids))