-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
89 lines (74 loc) · 3.04 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import sys
import time
import random
from multiprocessing import Queue
import hydra
from omegaconf import DictConfig, open_dict, OmegaConf
import torch
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
import wandb
from trainers.pretrain import pretrain
from trainers.evaluate import evaluate
from trainers.test import test
from trainers.generate_embeddings import generate_embeddings
from utils.utils import grab_arg_from_checkpoint, prepend_paths, re_prepend_paths
torch.multiprocessing.set_sharing_strategy('file_system')
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False
#@hydra.main(config_path='./configs', config_name='config', version_base=None)
def run(args: DictConfig):
pl.seed_everything(args.seed)
args = prepend_paths(args)
time.sleep(random.randint(1,5)) # Prevents multiple runs getting the same version when launching many jobs at once
if args.resume_training:
if args.wandb_id:
wandb_id = args.wandb_id
checkpoint = args.checkpoint
ckpt = torch.load(args.checkpoint)
args = ckpt['hyper_parameters']
args = OmegaConf.create(args)
#with open_dict(args):
args.checkpoint = checkpoint
args.resume_training = True
if not 'wandb_id' in args or not args.wandb_id:
args.wandb_id = wandb_id
# Run prepend again in case we move to another server and need to redo the paths
args = re_prepend_paths(args)
if args.generate_embeddings:
if not args.datatype:
args.datatype = grab_arg_from_checkpoint(args, 'dataset')
generate_embeddings(args)
return args
base_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
if args.use_wandb:
if args.resume_training and args.wandb_id:
wandb_logger = WandbLogger(project=args.wandb_project, entity=args.wandb_entity, save_dir=base_dir, offline=args.offline, id=args.wandb_id, resume='must')
else:
wandb_logger = WandbLogger(project=args.wandb_project, entity=args.wandb_entity, save_dir=base_dir, offline=args.offline, log_model='all')
else:
wandb_logger = WandbLogger(name=args.target, project='Test', entity='', save_dir=base_dir, offline=args.offline)
args.wandb_id = wandb_logger.version
if args.checkpoint and not args.resume_training:
if not args.datatype:
args.datatype = grab_arg_from_checkpoint(args, 'datatype')
if args.pretrain:
model = pretrain(args, wandb_logger)
args.checkpoint = os.path.join(base_dir, 'runs', args.datatype, wandb_logger.experiment.name, f'checkpoint_last_epoch_{args.max_epochs-1:02}.ckpt')
if args.test:
test(args, wandb_logger, model)
elif args.evaluate:
evaluate(args, wandb_logger)
wandb.finish()
del wandb_logger
@property
def exception(self):
if self._pconn.poll():
self._exception = self._pconn.recv()
return self._exception
@hydra.main(config_path='./configs', config_name='config', version_base=None)
def control(args: DictConfig):
run(args)
if __name__ == "__main__":
control()