-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognition.py
84 lines (63 loc) · 2.39 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import cv2
import numpy as np
import os
import csv
recognizer = cv2.face.LBPHFaceRecognizer_create()
# Our trainer file
recognizer.read('trainer/trainer.yml')
# Our classifier
cascadePath = "classifiers/haarcascade_frontalface_default.xml"
# Sets the color of our recognized name/square outlay as per our confidence level.
def color_confidence(confidence):
confidence_color = float(confidence) * 2.55
rgb = [255 - confidence_color, confidence_color, 0] # starting color green
print(rgb)
return rgb
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX
id = 0
names = []
# Hard coded names representing the ID's of faces we have trained.
print("Populating training faces...")
with open('trainer/trained_individuals.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for row in csv_reader:
if row:
names.append(row[1])
# Initialize and start realtime video capture
cam = cv2.VideoCapture(0)
cam.set(3, 1200) # camera width
cam.set(4, 800) # camera height
# Define min window size to be recognized as a face
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
while True:
ret, img = cam.read()
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize=(int(minW), int(minH)),
)
for(x, y, w, h) in faces:
id, confidence = recognizer.predict(gray[y:y + h, x:x+w])
confidence_color_number = color_confidence(100 - confidence)
# Drawing the identifier box.
cv2.rectangle(img, (x, y), (x + w, y + h), confidence_color_number, 2)
# Check if confidence is less them 100 ==> "0" is perfect match
if confidence < 100:
print(names[id])
id = names[id]
confidence_color_number = round(100 - confidence)
confidence = " {0}%".format(round(100 - confidence))
else:
id = "Unknown"
confidence_color_number = round(100 - confidence)
confidence = " {0}%".format(round(100 - confidence))
cv2.putText(img, str(id), (x+10,y-10), font, 1, color_confidence(confidence_color_number), 2)
cv2.putText(img, str(confidence), (x+115,y-10), font, 1, color_confidence(confidence_color_number), 2)
cv2.imshow('camera',img)
k = cv2.waitKey(10) & 0xff
cam.release()
cv2.destroyAllWindows()